POJ 1845(Sumdiv)

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

题意:给出A和B,求A^B这个数所有约数的和。

思路:设A^B=(p1^k1)*...(pn^kn),那么约数和就是ans=(1+p1+p1^2+...p1^k1)*....(1+pn+pn^2+...pn^kn)。然后对于每一个素因子用一个等比数列求和公式算出来就行了,但是因为涉及到除法取模,直接求逆元wa了,毕竟费马小定理要求 a^(p-1)≡1(mod p)中a和p互素,且p是素数。所以用之前见过的另一个知识点。

(A/B)%mod=(A%(mod*B))/B%mod。对B*mod取余,剩余A的值必定是B的倍数。

等比求和公式应该就不用证明A是B的倍数了吧。。剩下就直接代代进去就行了。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define PI acos(-1)
#define ll long long
#define LL long long
#define inf 0x3f3f3f3f
#define ull unsigned long long
using namespace std;

const int MAXN = 50005;
bool flag[MAXN];
int primes[MAXN/3],pi;
void Prime()
{
    int i,j;
    pi=0;
    memset(flag,false,sizeof(flag));
    for(i=2;i>=1;
    }//
    return res;
}
long long qpow(long long a,long long b,long long mod)
{
    a=a%mod;
    long long res=1;
    while(b)
    {
        if(b&1)
        {
            res=mul_mod(res,a,mod);
        }
        a=mul_mod(a,a,mod);
        b>>= 1;
    }
    return res;
}
void solve(ll a,ll b)
{
    ll ans=1;
    ll cnt;
    for(ll i=1;i<=pi&&primes[i]*primes[i]<=a;i++)
    {
        if(a%primes[i]==0)
        {
            cnt=0;
            while(a%primes[i]==0)
            {
                cnt++;
                a=a/primes[i];
            }
            long long m = (primes[i] - 1) * 9901;
			ans*=(qpow(primes[i],cnt*b+1,m)+m-1)/(primes[i]-1);
			ans%= 9901;
        }
    }
    if(a>1)
    {
        long long m = 9901 * (a - 1);
		ans*=(qpow(a,b+1,m)+m-1)/(a-1);
		ans%= 9901;
    }
    printf("%lld\n",ans);
}
int main()
{
    Prime();
    ll a,b;
    while(scanf("%lld%lld",&a,&b)!=EOF)
    {
        if(a<=1||b==0)
        {
            cout<<1<

 

你可能感兴趣的:(POJ 1845(Sumdiv))