- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 深度学习基础——卷积神经网络(一)
牛哥带你学代码
Python数据分析python数学建模算法深度学习cnn人工智能
卷积操作与自定义算子开发卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了MindSpore中pyfunc和TBE两种自定义算子实现方法。卷积基本原理1.1卷积的概念卷积操作发展于信号处
- 大语言模型学习路线:从入门到实战
Tim_Van
人工智能语言模型自然语言处理大语言模型大模型
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习基础 叁:反向传播算法
白拾Official
#深度学习神经网络算法网络深度学习人工智能
注:封面画师:新雨林-触站说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。反向传播算法反向传播算法什么是正向传播网络什么是反向传播反向传播算法为什么需要反向传播图解反向传播反向传播计算链式求导法则案例1:通过反
- 深度学习基础之《TensorFlow框架(2)—图》
csj50
机器学习深度学习
一、什么是图结构1、图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据图结构:数据(Tensor)+操作(Operation)二、图相关操作1、默认图通常TensorFlow会默认帮我们创建一张图查看默认图的两种方法:(1)通过调用tf.compat.v1.get_default_graph()访问,要将操作添加到默认图形中,直接创建OP即可(2
- 深度学习基础之《TensorFlow框架(4)—Operation》
csj50
机器学习深度学习
一、常见的OP1、举例类型实例标量运算add,sub,mul,div,exp,log,greater,less,equal向量运算concat,slice,splot,canstant,rank,shape,shuffle矩阵运算matmul,matrixinverse,matrixdateminant带状态的运算variable,assgin,assginadd神经网络组件softmax,sig
- 大致聊聊ChatGPT的底层原理,实现方法
黑马程序员官方
chatgpt人工智能机器学习
文目录深度学习基础ChatGPT的本质ChatGPT原理详解一、深度学习基础—深度学习是什么?如何理解神经网络结构?关于生物神经网络结构如下:神经网络介绍人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。当电信号通过树突进入到核细胞时,会逐渐聚集电荷。达到一定的电位后,细胞会被激活,通过轴突发出信号。从
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 深度学习基础--反向传播
掰不开桃子的男人
Modelimage.png前向传播image.png反向传播求误差image.png求对J的影响image.pngimage.png求对J的影响image.pngimage.png误差反传image.pngimage.pngimage.png参考:深度学习—反向传播(BP)理论推导-Backpropagation算法的推导与直观图解-文之-博客园
- 深度学习基础之-3.3线性二分类的神经网络实现
SusanLovesTech
深度学习二分类神经网络线性实现python
线性二分类的神经网络实现提出问题回忆历史,公元前206年,楚汉相争,当时刘邦项羽麾下的城池地理位置如下:0.红色圆点,项羽的城池1.绿色叉子,刘邦的城池其中,在边界处有一些红色和绿色重合的城池,表示双方激烈争夺的拉锯战。样本序号123…119经度相对值0.0254.109…7.767纬度相对值3.4088.012…1.8721=汉,0=楚110…1问题:经纬度相对值为(5,1)时,属于楚还是汉?经
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 新书速览|PyTorch 2.0深度学习从零开始学
全栈开发圈
深度学习pytorch人工智能
实战中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别01本书简介本书以通俗易懂的方式介绍PyTorch深度学习基础理论,并以项目实战的形式详细介绍PyTorch框架的使用。为读者揭示PyTorch2.0进行深度学习项目实战的核心技术,实战案例丰富而富有启发。02本书内容本书共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实
- 基于Python的深度学习基础
程序媛了了
python开发语言
Python基础Python是一种开源的、简单易记、可以自由使用编程语言。深度学习将使用NumPy和Matplotlib这两种外部库Python有“解释器”和“脚本文件”两种运行模式Python能够将一系列处理集成为函数或类等模块NumPy中有很多用于操作多维数组的便捷方法类与对象变量是挂在对象身上的标签classMan:#定义了一个新类Man,类Man生成了实例(对象)m#类Man的构造函数(初
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 【深度学习基础】什么是卷积?为什么要用卷积?
BIT可达鸭
▶深度学习-计算机视觉神经网络卷积计算机视觉深度学习python
什么是卷积?为什么要用卷积?(一)卷积的原理:1.卷积核:2.卷积层参数:2.1卷积核数:2.2卷积核的大小:2.3步长:2.4填充:3.池化层:3.1最大池化层(maxpooling):3.2均值池化层(averagepooling):(二)卷积的作用:1.减少参数量:
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- 深度学习简介与应用
jcfszxc
测试专栏深度学习
深度学习简介与应用深度学习是人工智能领域中备受关注的一项技术,通过模拟人脑神经网络的结构,实现了在大规模数据上进行复杂任务的能力。本文将简要介绍深度学习的基本概念,并探讨其在不同领域的应用。深度学习基础深度学习的核心是神经网络,它由多个层次组成,每一层都包含多个神经元。通过训练这些神经网络,系统能够自动学习数据中的模式和特征,从而实现分类、预测等任务。人工神经网络结构输入层:接收数据的第一层,每个
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 大模型的学习路线图推荐—多维度深度分析【云驻共创】
一见已难忘
IT分享/测评/交流学习大模型语言模型多维度深度分析
本文背景近年来,随着深度学习技术的迅猛发展,大模型已经成为学术界和工业界的热门话题。大模型具有数亿到数十亿的参数,这使得它们在处理复杂任务时表现得更为出色,但同时也对计算资源和数据量提出了更高的要求。学习大模型的路线图通常需要一系列的基础知识、进阶技能以及实际应用经验。以下是一些相关的背景信息:1.深度学习基础:学习大模型之前,对深度学习的基本概念、神经网络的原理、激活函数、损失函数等基础知识有一
- 深度学习基础之数据操作
丘小羽
pytorch深度学习人工智能
深度学习中最常用的数据是张量,对张量进行操作是进行深度学习的基础。以下是对张量进行的一些操作:首先我们需要先导入相关的张量库torch。元素构造(初始化)使用arange创造一个行向量,也就是0轴(0维)。默认是按顺序创建,从0开始,元素类型默认是整数,当然也可以指定为浮点数。比如:可以使用张量shape属性来访问张量(沿每个轴的长度)的形状(shape)。当然指的是形状,也可能不只是一个维度。我
- Pytorch第2周:深度学习基础 - Day 8-9: 神经网络基础
M.D
深度学习神经网络人工智能pytorchpythontensorflow2
Pytorch第2周:深度学习基础-Day8-9:神经网络基础学习目标:理解神经网络的基础概念。学习如何使用PyTorch的nn模块构建神经网络。学习内容:神经网络基础概念:神经元:构成神经网络的基本单元,模拟生物神经元的功能。层:神经网络的构建块,包括输入层、隐藏层和输出层。激活函数:引入非线性因素,使网络能够学习复杂的模式,如ReLU、Sigmoid、Tanh等。使用PyTorch的nn模块:
- 吴恩达倾情推荐!28张图全解深度学习知识!
深度学习算法与自然语言处理
NLP与大模型机器学习深度学习人工智能自然语言处理机器学习
本文约7500字,建议阅读15分钟本文将从深度学习基础(01-13)、卷积网络(14-22)和循环网络(23-28)三个方面介绍该笔记。吴恩达在推特上展示了一份由TessFerrandez完成的深度学习专项课程图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。这不仅仅是一份课程笔记,同时还是一套信息图与备忘录。需要原版
- 【深度学习入门】深度学习基础概念与原理
代码骑士
#深度学习人工智能
*(本篇文章旨在帮助新手了解深度学习的基础概念和原理,不深入讨论算法及核心公式)目录一、深度学习概述1、什么是深度学习?2、深度学习与传统机器学习的区别3、深度学习的应用领域二、深度学习基本原理1、神经网络的基本结构(1)什么是神经网络?(2)神经网络基本结构2、激活函数的作用和选择(1)什么是激活函数?(2)激活函数的作用与选择3、损失函数的定义和选择(1)什么是损失函数(2)损失函数的选择4、
- 深度学习基础数据结构之张量:从一维到多维
m0_61254808
深度学习python深度学习机器学习人工智能
张量在深度学习框架中广泛应用于模型的输入、输出以及中间计算过程。通过支持高维度矩阵运算、记录梯度信息等功能,张量成为实现深度学习算法的关键。张量是一个多维数据容器,可以用来表示各种数据类型,如数值、图像、音频、文本等。本文将介绍一维、二维、三维和四维张量的形象展示、应用以及对学习理解的作用。01一维张量一维张量通常被称为向量,如一维数组[1,4,3,2,5],在数学和线性代数中,向量是指具有大小和
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持