- 使用Faiss进行高效相似度搜索
llzwxh888
faisspython
在现代AI应用中,快速和高效的相似度搜索是至关重要的。Faiss(FacebookAISimilaritySearch)是一个专门用于快速相似度搜索和聚类的库,特别适用于高维向量。本文将介绍如何使用Faiss来进行相似度搜索,并结合Python代码演示其基本用法。什么是Faiss?Faiss是一个由FacebookAIResearch团队开发的开源库,主要用于高维向量的相似性搜索和聚类。Faiss
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Faiss:高效相似性搜索与聚类的利器
网络·魚
大数据faiss
Faiss是一个针对大规模向量集合的相似性搜索库,由FacebookAIResearch开发。它提供了一系列高效的算法和数据结构,用于加速向量之间的相似性搜索,特别是在大规模数据集上。本文将介绍Faiss的原理、核心功能以及如何在实际项目中使用它。Faiss原理:近似最近邻搜索:Faiss的核心功能之一是近似最近邻搜索,它能够高效地在大规模数据集中找到与给定查询向量最相似的向量。这种搜索是近似的,
- 向量数据库对比分析报告
大霸王龙
行业+领域+业务场景=定制人工智能深度学习python
FAISS、Milvus、Weaviate和OpenAIAPI四个工具的对比分析,主要针对是否支持离线、开发难度、debug支持、生态系统以及Python接口等方面。1.FAISS(FacebookAISimilaritySearch)是否支持离线:支持。FAISS是一个离线库,可以部署在本地或服务器上,不需要网络连接。开发难度:中等。FAISS是一个低级别的工具,需要开发者对近似最近邻搜索算法和
- 起底 QAnything 解析 目录与第三方库和工具
路人与大师
人工智能
├─configs│conversation.py│model_config.py│__init__.py│├─connector││__init__.py│││├─database│││__init__.py│││││├─faiss│││faiss_client.py│││__init__.py│││││└─mysql││mysql_client.py││__init__.py│││├─embe
- 【Faiss】构建高效搜索系统 - Faiss向量数据库的搭建
何遇mirror
大数据faiss
目录编辑1.引言2.Faiss简介3.安装与配置3.1在不同操作系统上的安装方法3.1.1Windows3.1.2macOS3.1.3Linux3.2配置开发环境3.2.1使用virtualenv3.2.2使用Anaconda1.引言在当今这个数据爆炸的时代,快速有效地处理海量数据已经成为企业和研究机构面临的重大挑战之一。特别是在计算机视觉、自然语言处理等领域,面对大量的高维向量数据,传统的数据库
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- 【大模型】FAISS向量数据库记录:从基础搭建到实战操作
爱python的王三金
自然语言处理LLMRAGfaiss数据库rag
文章目录文章简介Embedding模型BGE-M3模型亮点FAISS是什么FAISS实战安装faiss加载Embedding模型创建FAISS数据库搜索FAISS数据删除FAISS数据保存、加载FAISS索引总结本人数据分析领域的从业者,拥有专业背景和能力,可以为您的数据采集、数据挖掘和数据分析需求提供支持。期待着能够与您共同探索更多有意义的数据洞见,为您的项目和业务提供数据分析方面的帮助。文章简
- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 向量数据库Faiss的详细介绍和搭建使用教程
大白菜程序猿
运维faiss
一、Faiss简介向量数据库Faiss(FacebookAISimilaritySearch)是由FacebookAI研究院(FAIR)开发的一种高效的相似性搜索和聚类库。Faiss能够快速处理大规模数据,支持在高维空间中进行相似性搜索。它通过将候选向量集封装成一个index数据库,加速检索相似向量的过程,尤其在一些最有用的算法上实现了GPU加速。二、Faiss的安装Faiss支持多种操作系统,包
- 向量数据库 Faiss 的搭建与使用
eqa11
数据库
向量数据库Faiss的搭建与使用一、引言在人工智能和大数据技术飞速发展的今天,向量数据库作为处理高维数据检索的关键技术,越来越受到重视。Faiss,作为由MetaAI(原FacebookAIResearch)开源的高效相似性搜索库,以其卓越的性能和灵活性,成为众多技术选型中的佼佼者。本文将深入探讨Faiss的搭建和使用,旨在为读者提供一个全面而详细的指南。二、Faiss简介与环境搭建1、Faiss
- 【大数据】深入解析向量数据库Faiss:搭建与使用指南
程序者王大川
杂谈kylinfaiss学习数据库ai编程
摘要:本文将介绍向量数据库的概念,重点讲解Faiss这一高性能相似性搜索库。通过分析官网内容,详细阐述Faiss的安装过程及使用方法,帮助读者快速上手并应用于实际项目中。什么是向量数据向量数据是一种数据类型,通常用于数学、物理学、计算机科学和数据分析等领域。在技术术语中,向量数据通常指的是以下几种概念:数学向量:在数学中,向量是一个具有大小和方向的量,可以在平面上或空间中表示为箭头。数学向量可以是
- 详细说明:向量数据库Faiss的搭建与使用
AI逍遥子
faiss
当然,Faiss(FacebookAISimilaritySearch)是一个用来高效地进行相似性搜索和密集向量聚类的库。它能够处理大型数据集,并且在GPU上的性能表现尤为出色。下面详细介绍Faiss的搭建与使用。1.搭建Faiss1.1安装依赖包首先,需要安装Faiss及其依赖包。可以使用如下命令:#如果使用CPU版本pipinstallfaiss-cpu#如果使用GPU版本pipinstall
- 向量数据库Faiss的搭建与使用|Faiss|向量数据库|高效检索|机器学习|大规模数据
concisedistinct
人工智能faiss数据库人工智能机器学习
目录1.Faiss概述1.1Faiss的背景与重要性1.2Faiss的基本概念与特点2.Faiss的安装与环境配置2.1环境要求2.2Faiss的安装2.3验证安装3.Faiss的基本使用3.1创建索引与添加向量3.2执行查询3.3向量的压缩与内存优化4.Faiss的高级功能与优化4.1GPU加速与多GPU支持4.2混合索引与自定义距离度量4.3高维数据的优化在处理高维数据的场景中,快速且高效地进
- 安装faiss环境教程
you_are_my_sunshine*
faiss
文章目录打开环境安装faiss环境检查已安装的环境切换环境至faiss打开环境sourceactivate#打开环境安装faiss环境condacreate-nfaiss_env#安装faiss环境检查已安装的环境condainfo--envs#检查已安装的环境切换环境至faisscondaactivatefaiss_env#切换环境至faiss
- 使用GPT3.5,LangChain,FAISS和python构建一个本地知识库
juhanishen
GPTgpt-3langchainfaisschatbot
本篇文章获得同事刘工的授权刊登。原文发表于2023年6月28日。引言介绍本地知识库的概念和用途在现代信息时代,我们面临着海量的数据和信息,如何有效地管理和利用这些信息成为一项重要的任务。本地知识库是一种基于本地存储的知识管理系统,旨在帮助用户收集、组织和检索大量的知识和信息。它允许用户在本地环境中构建和管理自己的知识资源,以便更高效地进行信息处理和决策。本地知识库通常采用数据库、索引和搜索技术,以
- 海量数据相似数据查找方法(ANN):【高维稀疏向量的相似查找——MinHash, LSH, SimHash】【稠密向量的相似查找——Faiss、Annoy、ScaNN、Hnswlib】
u013250861
#RS/召回层#LLM/数据处理算法
主要分为高维稀疏向量和稠密向量两大方向。高维稀疏向量的相似查找——minhash,lsh,simhash针对高维稀疏数据情况,如何通过哈希技术进行快速进行相似查找。例如,推荐系统中item-user矩阵。如果你有item数量是百万级别,user是千万级别,这个矩阵是十分稀疏的。你如何计算每一个item的TopN相似item呢?同样海量文本场景,文本集合可以看成doc-word稀疏矩阵,如何求解每个
- 自然语言处理(NLP)-第三方库(工具包):Faiss【向量最邻近检索工具】【为稠密向量提供高效相似度搜索】【多种索引构建方式,可根据硬件资源、数据量选择合适方式】【支持十亿级别向量的搜索】
u013250861
机器学习/ML#RS/召回层#LLM/数据处理聚类自然语言处理Faiss
一、Faiss介绍Faiss是FacebookAI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。它包含多种搜索任意大小向量集(备注:向量集大小由RAM内存决定)的算法,以及用于算法评估和参数调整的支持代码。Faiss用C++编写,并提供与Numpy完美衔接的Python接口。除此以外,对一些核心算法提供了GPU实现。相
- 推荐系统的向量检索工具: Annoy & Faiss
我就算饿死也不做程序员
python推荐系统python推荐系统向量检索最邻近搜索
在推荐系统的召回阶段,如YoutubeDNN和DSSM双塔模型,向量的最邻近检索是必不可少的一步。一般的做法不会让模型在线预测召回,而是先离线将向量存储,然后在线上进行向量的最邻近检索,作为模型的召回。例如:离线训练模型后,将item向量存储至某种数据库,然后线上推理时,模型实时计算输出user向量,然后通过Annoy或Faiss进行内积的最邻近检索。这篇文章将介绍两个常用的向量最邻近检索工具:A
- Annoy算法简单介绍
hblg_bobo
算法pythonjava
Annoy算法与Faiss相比,Annoy搜索,速度更快一点,主要目的是建立一个数据结构快速找到任何查询点的最近点。通过牺牲查询准确率来换取查询速度,这个速度比faiss速度还要快。是什么Annoy:最近邻向量搜索,原理/过程算法原理:先构建索引,对于每个二叉树都建立索引,在这里二叉树是随机构造的第一步:先随机找两个点,根据这两个点进行连线,找到垂直平分线,称为超平面。第二步:在切分后的子空间,继
- 向量搜索查询faiss、annoy
学习3人组
faiss
首先介绍annoy:转发空间:https://download.csdn.net/blog/column/10872374/114665212Annoy是高维空间求近似最近邻的一个开源库。Annoy构建一棵二叉树,查询时间为O(logn)。Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上
- bert+np.memap+faiss文本相似度匹配 topN
木下瞳
NLP机器学习深度学习模型bertfaiss人工智能
目录任务代码结果说明任务使用bert-base-chinese预训练模型将文本数据向量化后,使用np.memap进行保存,再使用faiss进行相似度匹配出每个文本与它最相似的topN此篇文章使用了地址数据,目的是为了跑通这个流程,数据可以自己构建模型下载:bert预训练模型下载-CSDN博客np.memap:是NumPy库中的一种内存映射文件(Memory-MappedFile)对象,它允许你将硬
- faiss-1: 安装
uncle_ll
Python搜索faiss安装cpugpulinux
faiss安装git项目的安装教程:https://github.com/facebookresearch/faiss/blob/main/INSTALL.md使用Anaconda安装使用Anaconda安装使用faiss是最方便快速的方式,facebook会及时推出faiss的新版本conda安装包,在conda安装时会自行安装所需的libgcc,mkl,numpy模块。faiss的cpu版本目
- 编译Faiss-gpu【InterMKL】C++ 按步骤操作 基本不会有问题的 python原理相同。
Nova_新星
faissfaissc++开发语言
编译Faiss-gpuC++基本介绍使用Faiss版本【1.7.4】该项目依赖于BLAS组件OpenBLAS和IntelMKLBLAS【官方支持】IntelMKL会比OpenBLAS快的多。【来自官方结论】本机环境Cuda:11.1Cuda-Driver:515InterMKL:2021.2.0Faiss:1.7.4注意:faiss仅适用于CPU的faiss-cpuconda软件包目前可在Linu
- 2024年1月17日Arxiv热门NLP大模型论文:THE FAISS LIBRARY
夕小瑶
自然语言处理人工智能搜索深度学习神经网络论文阅读
Meta革新搜索技术!提出Faiss库引领向量数据库性能飞跃引言:向量数据库的兴起与发展随着人工智能应用的迅速增长,需要存储和索引的嵌入向量(embeddings)数量也在急剧增加。嵌入向量是由神经网络生成的向量表示,其主要目的是将输入媒体项映射(嵌入)到向量空间中,空间中的局部性编码了输入的语义。这些嵌入向量从各种媒体形式中提取,包括文字、图像、用户和推荐项目等。它们甚至可以编码对象关系,例如多
- 云原生向量数据库Milvus
Whenerver
云原生数据库milvus
什么是MilvusMilvus是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。Milvus基于FAISS、Annoy、HNSW等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus支持数据分区分片、数据持久化、增量数据摄取、标量向量混合查询、timetravel等功能,同时大幅优化了向量检索的性能,可满足任何向量检索场景的应
- 向量数据库:faiss的常用三种数据索引方式(IndexFlatL2,IndexIVFFlat,IndexIVFPQ)的使用和持久化+索引融合的实现及库函数解读
FakeOccupational
数据分析数据库faiss
常用的三种索引方式Faiss中有常用的三种索引方式:IndexFlatL2、IndexIVFFlat和IndexIVFPQ。1.IndexFlatL2-暴力检索L2:使用欧氏距离(L2)进行精确检索。适用于较小规模的数据集,采用暴力检索的方式,即计算查询向量与所有数据库向量之间的距离,然后返回相似度最高的前k个向量。importfaissd=200#向量维度index=faiss.IndexFla
- 向量数据库:faiss的IndexPQ中PQ的图解+实现质心表的融合
FakeOccupational
数据分析数据库faiss
IndexPQ一个indexPQ的简单示例:importnumpyasnpimportfaiss#生成一些随机数据作为示例np.random.seed(42)data=np.random.random((10000,64)).astype('float32')#定义PQ索引的参数m,nbits=8,8#m:子空间的数量,nbits:每个子空间的比特数#创建IndexPQindex=faiss.In
- LangChain 35: 安全最佳实践深度防御Security
AI架构师易筋
LLM-LargeLanguageModelslangchain安全LLMpromptchatgpt人工智能
LangChain系列文章LangChain实现给动物取名字,LangChain2模块化prompttemplate并用streamlit生成网站实现给动物取名字LangChain3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain4用向量数据库Faiss存储,读取YouTube的视频文本搜索IndexesforinformationretrieveLangC
- LangChain 31 模块复用Prompt templates 提示词模板
AI架构师易筋
LLM-LargeLanguageModelslangchainpromptLLMchatgpt语言模型人工智能
LangChain系列文章LangChain实现给动物取名字,LangChain2模块化prompttemplate并用streamlit生成网站实现给动物取名字LangChain3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain4用向量数据库Faiss存储,读取YouTube的视频文本搜索IndexesforinformationretrieveLangC
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =