- 【RAG专题】如何选择合适的RAG架构?
星际棋手
人工智能
选择适合的RAG架构需结合自身业务需求、数据特点、性能要求等因素综合判断,以下是关键考量维度及对应架构选择建议:1.按数据规模与类型选择•小规模、单一类型数据(如纯文本文档库):适合基础单阶段检索架构(检索模块+生成模块)。◦检索:用轻量级嵌入模型(如BGE-base、all-MiniLM)+简单向量数据库(如FAISS)。◦生成:搭配中小型LLM(如Llama2-7B、Mistral),无需复杂
- LangChain教程11:LangChain高效检索器最佳实践
Cachel wood
LLM和AIGClangchain
文章目录相似性搜索底层原理K-MeansHierarchicalNavigableSmallWorlds(HNSW)FAISSPineconeLance总结相似性搜索底层原理FAISS相似度匹配Pinecone索引检索Lance向量持久化存储总结相似性搜索(SimilaritySearch)既然我们知道了可以通过比较向量之间的距离来判断它们的相似度,那么如何将它应用到真实的场景中呢?如果想要在一个
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 单机环境下基于 LLM-Agent 框架的数据查询智能体训练教程
单机环境下基于LLM-Agent框架的数据查询智能体训练教程以下教程介绍如何在单机环境(CPU或1~2张GPU)上,使用LLM-Agent框架搭建并训练一个混合数据源查询智能体。该智能体可同时处理结构化数据(如SQL数据库、PandasDataFrame)和非结构化数据(如网页、PDF文档等),通过检索与工具调用回答用户问题。训练目标包括:构建高效的检索模块(如FAISS向量检索、RAG、混合检索
- 【向量数据库】Ubuntu编译安装FAISS
风好衣轻
向量数据库ubuntufaisslinux
参考官方的安装指导:https://github.com/facebookresearch/faiss/blob/main/INSTALL.md,不需要安装的可以跳过~$wgethttps://github.com/facebookresearch/faiss/archive/refs/tags/v1.8.0.tar.gz~$tar-zxvfv1.8.0.tar.gz~$cdfaiss-1.8.0
- 为什么像 “仓库” 而非 “工厂”?
为什么像“仓库”而非“工厂”?核心功能:工厂:生产新产品(如汽车、手机)。仓库:存储和快速检索已有物品(如按编号查找箱子)。IndexFlatL2的作用是存储高维向量并快速找到相似向量,更接近仓库的“存储+检索”功能。类比细节:仓库概念FAISS索引对应仓库空间内存中分配的向量存储空间货架编号系统向量索引结构(基于欧氏距离)物品入库index.add(vectors)按编号快速查找箱子index.
- FAISS:高性能向量库
老兵发新帖
faiss
一.FAISS介绍FAISS是什么?FAISS(FacebookAISimilaritySearch)是一个专门用于稠密向量相似度搜索和聚类的开源库。主要功能1.向量相似度搜索importfaissimportnumpyasnp#创建索引index=faiss.IndexFlatL2(128)#128维向量#添加向量vectors=np.random.random((1000,128)).asty
- c cuda 指定gpu_faiss-gpu近邻检索
宁静致远敏
ccuda指定gpu
环境准备:双路CPU工作站128G内存英伟达1080Ti显卡两块faiss源码包centos7.2+python2.7+anaconda2(环境变量与openblas安装同GPU版)centos7.2+python3.6+anaconda3(conda安装faiss环境)1显卡驱动安装显卡安装有两种方式,一种是用yum从ELRepo源中安装,一种是从源码编译驱动。我们选用第一种方式来安装(简单)。
- faiss上的GPU流程,GPU与CPU之间的联系
GPU使用流程1、初始化阶段1.1:初始化GPU资源对象目的:为GPU上的操作分配和管理资源,例如临时内存和CUDA流。操作:创建StandardGpuResources对象来管理GPU的内存和计算资源。例如:faiss::gpu::StandardGpuResourcesres;res.setTempMemory(1024*1024*512);//分配512MB临时内存对向量的操作:此时还没有直
- Faiss vs Milvus 深度对比:向量数据库技术选型指南
FaissvsMilvus深度对比:向量数据库技术选型指南引言:向量数据库的时代抉择在AI应用爆发的今天,企业和开发者面临着如何存储和检索海量向量数据的重大技术选择。作为当前最受关注的两大解决方案,Faiss和Milvus代表了两种不同的技术路线。本文将从架构设计到应用场景进行全面对比,助您做出明智的技术决策。一、核心定位差异维度FaissMilvus性质算法库完整数据库系统开发方Facebook
- pymilvus
老兵发新帖
人工智能
一.pymilvus介绍pymilvus是什么?pymilvus是连接和操作Milvus向量数据库的PythonSDK,用于处理大规模向量数据的存储、索引和搜索。️Milvus向量数据库什么是Milvus?专业向量数据库-专门为向量数据设计的数据库系统☁️云原生架构-支持分布式部署和水平扩展⚡高性能-基于FAISS、Annoy等多种向量索引引擎pymilvus基本使用安装pipinstallpym
- 【FlashRAG】本地部署与demo运行(二)
NaturalHarmonia
pythonflashragrag
前文【FlashRAG】本地部署与demo运行(一)下载必要的模型文件完成了项目拉取和依赖下载后,我们需要进一步下载模型文件Faiss(FacebookAISimilaritySearch)是由FacebookAI团队开发的高效相似性搜索和密集向量聚类库。它专门优化了大规模向量数据库的搜索和聚类任务,适用于机器学习中的嵌入向量检索场景,如推荐系统、图像检索、自然语言处理等。这里CPU/GPU版本可
- 【RAG 篇】万字深度对比:Milvus 与 FAISS、Pinecone、Weaviate 等向量数据库选型指南
大F的智能小课
milvusfaiss数据库
大家好,我是大F,深耕AI算法十余年,互联网大厂核心技术岗。知行合一,不写水文,喜欢可关注,分享AI算法干货、技术心得。【专栏介绍】:欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!【大模型篇】更多阅读:【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读【大模型篇】目前主流AI大模型体系全解析:架构、特点与应用【大模型篇】Gro
- 2025-05-26 什么是“AI 全栈”
大油头儿
AIai
AI全栈:模型+表示学习+向量库+API+UI一句话定义:AI全栈开发,是指开发者从原始文本/语音/图像开始,结合大模型能力,构建完整应用闭环的技术能力栈。AI全栈应用的过程AI应用≠一个GPT接口,它通畅包含输入:用户提供问题/文档/图片/音频↓表示学习(Embedding):把输入变成向量↓检索(Faiss/Milvus):在知识库中找相关内容↓生成(LLM):构造Prompt+调用模型生成答
- 【程序员AI入门:应用】11.从零构建智能问答引擎:LangChain + RAG 实战优化指南
无心水
程序员零门槛转型AI开发专栏人工智能langchain程序员AI开发入门程序员AI入门程序员的AI开发第一课AI入门RAG
一、技术选型与核心组件解析1.1黄金技术栈选型组件推荐方案核心优势资源需求文本嵌入模型sentence-transformers/all-MiniLM-L6-v2轻量级(128MB)、支持多语言语义编码,余弦相似度准确率达89.2%CPU即可运行向量数据库FAISS(内存检索)/Chroma(持久化存储)FAISS毫秒级检索速度,Chroma支持增量更新和元数据过滤本地部署优先选Chroma大语言
- 基于Qwen-14b的基础RAG实现及反思
带鱼工作室
pythonllm人工智能pythonqwenrag
1、概览本文主要介绍RAG的基础实现过程,给初学者提供一些帮助,RAG即检索增强生成,主要是两个步骤:检索、生成,下面将基于这两部分进行介绍。2、检索检索的主要目的是在自定义的知识库kb中查询到与问题query相关的候选答案。过程中主要涉及的几个关键内容是:文本向量化模型、向量数据库,文本向量化模型如GTE、BGE等、向量数据库如faiss、weaviate、milvus等,对于选型本文不作介绍,
- 【速通RAG实战】3.从零开始快速搭建RAG应用
无心水
速通RAG实战!解锁AI2.0高薪密码RAG人工智能RAG快速开发实战速通RAG实战LangChain索引流程生成流程
1.RAG核心架构与技术栈1.基础架构用户查询→检索模块(Retriever)→生成模块(Generator)→结果输出↳向量/语义检索↳大模型生成↳文档/知识库↳答案整合2.关键技术栈模块工具/技术说明数据处理Python(Pandas/Spacy)文档清洗、分块、元数据提取向量存储FAISS/Chromadb/Milvus/Elasticsearch高效向量检索引擎检索模块LangChain/
- 生产级RAG系统一些经验总结
致Great
RAGRAG
本文将探讨如何使用最新技术构建生产级检索增强生成(RAG)系统,包括健壮的架构、向量数据库(Faiss、Pinecone、Weaviate)、框架(LangChain、LlamaIndex)、混合搜索、重排序器、流式数据接入、评估策略以及实际部署技巧。引言:检索增强生成的力量大型语言模型功能强大,但常常会产生幻觉——由于缺乏最新或事实性数据,它们可能会生成不正确的信息。检索增强生成(RAG)通过为
- Python&aconda系列:(W&L)Conda使用faiss-gpu报错及解决办法、安装numpy的坑、cmd执行Python脚本找不到第三方库、安装tensorflow-gpu时遇到的from
坦笑&&life
#pythonpythoncondafaiss
这里写目录标题一.通过AnacondaPrompt搭建faiss-gpu1.7.0和tensorflow-gpu1.13.1的联合环境二.安装tensorflow-gpu时遇到的fromtensorflow.pythonimportpywrap_tensorflow失败的解决方案三.cmd执行Python脚本出现找不到第三方库的问题(已解决)四.Python安装numpy躺过的坑五.坑之Ubunt
- Faiss: 高效密集向量相似性搜索和聚类库
何根肠Magnus
Faiss:高效密集向量相似性搜索和聚类库faissAlibraryforefficientsimilaritysearchandclusteringofdensevectors.项目地址:https://gitcode.com/gh_mirrors/fa/faiss一、项目介绍**Faiss(FacebookAISimilaritySearch)**是由Facebook人工智能研究团队开发并维护
- 五. 以聚类和搜图方式清洗图像数据集,采用Pickle和Faiss(百万数据集,ms级响应)快速搜图(附完整代码)
BB_CC_DD
高效清洗数据集深度学习faiss聚类
文章内容结构:一.总结Faiss和Pickle优缺点和适用场景。二.将图像特征打包成pickle文件(Python的序列化格式),匹配搜图(附完整代码)。三.将图像特征打包成faiss的index索引文件,匹配搜图(附完整代码)。四.先用Pickle保存图像特征,再用Faiss构建索引(更灵活)(附示例代码)。(注:这里全部是个人经验,能提升样本标注和清洗效率,不是标准的数据处理方式,希望对您有帮
- DEPRECATION: Could not build wheels for faiss-cpu, faiss-cpu which do not use PEP 517. pip will fall
Joey Chen&Wpl
pytorchpythonbugwindows机器学习
faiss-cpugpuwindows不支持,linux和mac支持,且仅支持cuda9.0及以上
- 探索AWS Bedrock与AI集成:构建强大应用的指南
gasjtak
aws人工智能云计算python
#探索AWSBedrock与AI集成:构建强大应用的指南近年来,随着人工智能技术的飞速发展,企业逐渐开始利用AI来增强自身的竞争力。其中,AWSBedrock作为一项托管服务,提供了一系列基础模型,特别是在文本生成和文本嵌入方面表现突出。本文将为您详细介绍如何连接和利用AWSBedrock服务,结合LangChain和FAISS,构建强大的AI应用。##1.引言AWSBedrock是一项提供基础模
- 【RAG】RAG 入门:什么是 RAG?有哪些相关技术?
YGGP
AIRAG
文章目录RAG入门:什么是RAG?有哪些相关技术?RAG的核心工作流程RAG的优势RAGvs.传统生成模型应用场景挑战与限制典型工作流RAG相关技术LangChain框架LangChain简介LangChain核心组件FAISS向量数据库FAISS简介FAISS核心功能FAISS典型应用场景LangChain+FAISS在RAG中的作用RAG实现工作流RAG+LangChain+FAISS三者关系
- Coggle数据科学 | 小白学 RAG:Milvus 介绍与使用教程
双木的木
深度学习拓展阅读milvus算法深度学习人工智能nlp数据库机器学习
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:小白学RAG:Milvus介绍与使用教程什么是Milvus?Milvus是一款高性能、高扩展性的开源向量数据库,专为处理海量向量数据的实时召回而设计。它基于FAISS、Annoy、HNSW等向量搜索库构建,核心功能是解决稠密向量相似度检索的问题。Milvus不仅支持基本的向量检索,还提供数据分区分片、数据持久化、增
- Langchain+Ollama实现Qwen模型+客服问答私有数据FAQ-实现RAG
showker
python开发语言
目标:部署一个结合大模型和RAG的,客服问题API,如果提问的问题在常见FAQ里,使用FAQ里数据,否则使用大模型回答问题。本文使用Ollama直接运行本地Qwen模型,需要先安装好ollama。现在我们将使用LangChain+Ollama搭建RAG(检索增强生成)系统,让它可以:从Excel读取FAQ将FAQ问题转换为向量(使用Ollama的Embedding模型)存入FAISS向量数据库提供
- 一个AI小白如何理解近似匹配检索
xieyu_zy
相似性匹配向量检索AI算法
在AI领域的相似性匹配中通常会接触很多新名词:ANN、KNN、HNSW、SQ8、Faiss、L2、L1、innerproduct...你可能会查了很多官方解释,但是:-->网上每个名词都告诉了是什么,我知道了他是什么,对,没错,我还是不知道它是什么-->根据用户手册,我Stepbystep成功完成了所有的实验,我依然不知道我在实验什么-->有业务场景讲解,与向量搜索/相似度匹配的关系是什么,没错,
- LLM之向量数据库Chroma milvus FAISS
maxmaxma
数据库milvusfaiss
以下是Chroma、Milvus和FAISS的核心区别,从功能定位、架构设计、性能及应用场景等维度进行对比:一、功能定位Chroma轻量级向量数据库:专注于快速构建中小型语义搜索原型,提供简单易用的API,适合快速集成到现有应用中。特点:支持近似最近邻搜索(ANN)、实时性能优化,但对大规模数据处理能力有限。Milvus分布式向量数据库:专为超大规模向量数据设计,支持云原生架构和高可用性,适合企业
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =