线程池的理解http://www.importnew.com/17633.html
ThreadPoolExecutor使用和思考(上)-线程池大小设置与BlockingQueue的三种实现区别 http://dongxuan.iteye.com/blog/901689#comments
先了解一下BlockingQueue
所有 BlockingQueue
都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
一共有三种类型的queue
排队有三种通用策略:
SynchronousQueue
,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。LinkedBlockingQueue
)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。ArrayBlockingQueue
)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。 ArrayBlockingQueue是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。如果任务很多,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。
ThreadPoolExecutor完整的构造方法如下:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
不同的线程池就是使用不同参数构造出来的ThreadPoolExecutor
常见的四种线程池和区别https://blog.csdn.net/qq_34952110/article/details/78086085
Executors类中包含多个生成ThreadPoolExecutor的方法
常用的几个为
固定大小线程池:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue
}
这是一个有指定的线程数的线程池,有核心的线程,里面有固定的线程数量,响应的速度快。正规的并发线程,多用于服务器。固定的线程数由系统资源设置。
适用:执行长期的任务,性能好很多
单个后台线程池:
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue
}
只有一个核心线程,通过指定的顺序将任务一个个丢到线程,都乖乖的排队等待执行,不处理并发的操作,不会被回收。确定就是一个人干活效率慢。
适用:一个任务一个任务执行的场景
不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,如果任务内存大一些,会耗尽系统资源。
无界线程池:
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue
}
只有非核心线程,最大线程数很大(Int.Max(values)),它会为每一个任务添加一个新的线程,这边有一个超时机制,当空闲的线程超过60s内没有用到的话,就会被回收。缺点就是没有考虑到系统的实际内存大小。
适用:执行很多短期异步的小程序或者负载较轻的服务器
SynchronousQueue,该QUEUE中,每个插入操作必须等待另一个线程的对应移除操作。比如,我先添加一个元素,接下来如果继续想尝试添加则会阻塞,直到另一个线程取走一个元素,反之亦然。(想到什么?就是缓冲区为1的生产者消费者模式^_^)
首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加,在这里不是核心线程便是新创建的线程。
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。
在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。
什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中
定时线程池:
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
这个线程池就厉害了,是唯一一个有延迟执行和周期重复执行的线程池。它的核心线程池固定,非核心线程的数量没有限制,但是闲置时会立即会被回收。
适用:周期性执行任务的场景
总结:
http://blog.csdn.net/zhouhl_cn/article/details/7392607
https://www.cnblogs.com/waytobestcoder/p/5323130.html
ThreadPoolExecutor类可设置的参数主要有:
核心线程会一直存活,即使没有任务需要处理。
当线程数小于核心线程数时,即使现有的线程空闲,线程池也会优先创建新线程来处理任务,而不是直接交给现有的线程处理。
核心线程在allowCoreThreadTimeout被设置为true时会超时退出,默认情况下不会退出。
当线程数大于或等于核心线程,且任务队列已满时,线程池会创建新的线程,直到线程数量达到maxPoolSize。
如果线程数已等于maxPoolSize,且任务队列已满,则已超出线程池的处理能力,线程池会拒绝处理任务而抛出异常。
当线程空闲时间达到keepAliveTime,该线程会退出,直到线程数量等于corePoolSize。
如果allowCoreThreadTimeout设置为true,则所有线程均会退出直到线程数量为0。
是否允许核心线程空闲退出,默认值为false。
任务队列容量。从maxPoolSize的描述上可以看出,任务队列的容量会影响到线程的变化,因此任务队列的长度也需要恰当的设置。
线程池按以下行为执行任务
系统负载
参数的设置跟系统的负载有直接的关系,下面为系统负载的相关参数:
参数设置
corePoolSize: 每秒需要多少个线程处理?
每个任务需要tasktime秒处理,则每个线程每秒可处理1/tasktime个任务。系统每秒有tasks个任务需要处理,则需要的线程数为:tasks/(1/tasktime),即tasks*tasktime个线程数。假设系统每秒任务数为100~1000,每个任务耗时0.1秒,则需要100*0.1至1000*0.1,即10~100个线程。那么corePoolSize应该设置为大于10,具体数字最好根据8020原则,即80%情况下系统每秒任务数,若系统80%的情况下每秒任务数小于200,最多时为1000,则corePoolSize可设置为20。
queueCapacity:(coreSizePool/tasktime)*responsetime
任务队列的长度要根据核心线程数,以及系统对任务响应时间的要求有关。队列长度可以设置为(corePoolSize/tasktime)*responsetime: (20/0.1)*2=400,即队列长度可设置为400。
队列长度设置过大,会导致任务响应时间过长,切忌以下写法:
LinkedBlockingQueue queue = new LinkedBlockingQueue();
这实际上是将队列长度设置为Integer.MAX_VALUE,将会导致线程数量永远为corePoolSize,再也不会增加,当任务数量陡增时,任务响应时间也将随之陡增。
maxPoolSize:(max(tasks)- queueCapacity)/(1/tasktime)
当系统负载达到最大值时,核心线程数已无法按时处理完所有任务,这时就需要增加线程。每秒200个任务需要20个线程,那么当每秒达到1000个任务时,则需要(1000-queueCapacity)*(20/200),即60个线程,可将maxPoolSize设置为60。
keepAliveTime:
线程数量只增加不减少也不行。当负载降低时,可减少线程数量,如果一个线程空闲时间达到keepAliveTiime,该线程就退出。默认情况下线程池最少会保持corePoolSize个线程。
allowCoreThreadTimeout:
默认情况下核心线程不会退出,可通过将该参数设置为true,让核心线程也退出。
rejectedExecutionHandler:根据具体情况来决定,任务不重要可丢弃,任务重要则要利用一些缓冲机制来处理
以上关于线程数量的计算并没有考虑CPU的情况。若结合CPU的情况,比如,当线程数量达到50时,CPU达到100%,则将maxPoolSize设置为60也不合适,此时若系统负载长时间维持在每秒1000个任务,则超出线程池处理能力,应设法降低每个任务的处理时间(tasktime)。
https://blog.csdn.net/u011519624/article/details/69263460
https://www.cnblogs.com/lengender-12/p/6869554.html
http://ifeve.com/how-to-calculate-threadpool-size/
要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:
性质不同的任务可以交给不同规模的线程池执行。
对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。
若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。
当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。
在这篇如何合理地估算线程池大小?文章中发现了一个估算合理值的公式
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:
最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
可以得出一个结论:
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。
并发编程网上的一个问题
高并发、任务执行时间短的业务怎样使用线程池?并发不高、任务执行时间长的业务怎样使用线程池?并发高、业务执行时间长的业务怎样使用线程池?
(1)高并发、任务执行时间短的业务,线程池线程数可以设置为CPU核数+1,减少线程上下文的切换
(2)并发不高、任务执行时间长的业务要区分开看:
a)假如是业务时间长集中在IO操作上,也就是IO密集型的任务,因为IO操作并不占用CPU,所以不要让所有的CPU闲下来,可以适当加大线程池中的线程数目,让CPU处理更多的业务
b)假如是业务时间长集中在计算操作上,也就是计算密集型任务,这个就没办法了,和(1)一样吧,线程池中的线程数设置得少一些,减少线程上下文的切换
(3)并发高、业务执行时间长,解决这种类型任务的关键不在于线程池而在于整体架构的设计,看看这些业务里面某些数据是否能做缓存是第一步,增加服务器是第二步,至于线程池的设置,设置参考(2)。最后,业务执行时间长的问题,也可能需要分析一下,看看能不能使用中间件对任务进行拆分和解耦。
在《linux多线程服务器端编程》中有一个思路,CPU计算和IO的阻抗匹配原则。
如果线程池中的线程在执行任务时,密集计算所占的时间比重为P(0
这个经验公式的原理很简单,T个线程,每个线程占用P的CPU时间,如果刚好占满C个CPU,那么必有 T * P = C。
下面验证一下边界条件的正确性:
假设C = 8,P = 1.0,线程池的任务完全是密集计算,那么T = 8。只要8个活动线程就能让8个CPU饱和,再多也没用了,因为CPU资源已经耗光了。
假设C = 8,P = 0.5,线程池的任务有一半是计算,有一半在等IO上,那么T = 16.考虑操作系统能灵活,合理调度sleeping/writing/running线程,那么大概16个“50%繁忙的线程”能让8个CPU忙个不停。启动更多的线程并不能提高吞吐量,反而因为增加上下文切换的开销而降低性能。
如果P < 0.2,这个公式就不适用了,T可以取一个固定值,比如 5*C。另外公式里的C不一定是CPU总数,可以是“分配给这项任务的CPU数目”,比如在8核机器上分出4个核来做一项任务,那么C=4
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:
package pool_size_calculate;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;
/**
* A class that calculates the optimal thread pool boundaries. It takes the
* desired target utilization and the desired work queue memory consumption as
* input and retuns thread count and work queue capacity.
*
* @author Niklas Schlimm
*
*/
public abstract class PoolSizeCalculator {
/**
* The sample queue size to calculate the size of a single {@link Runnable}
* element.
*/
private final int SAMPLE_QUEUE_SIZE = 1000;
/**
* Accuracy of test run. It must finish within 20ms of the testTime
* otherwise we retry the test. This could be configurable.
*/
private final int EPSYLON = 20;
/**
* Control variable for the CPU time investigation.
*/
private volatile boolean expired;
/**
* Time (millis) of the test run in the CPU time calculation.
*/
private final long testtime = 3000;
/**
* Calculates the boundaries of a thread pool for a given {@link Runnable}.
*
* @param targetUtilization
* the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) {
throw new IllegalStateException("Test not accurate");
}
expired = false;
start = System.currentTimeMillis();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
public void run() {
expired = true;
}
}, testtime);
while (!expired) {
task.run();
}
start = System.currentTimeMillis() - start;
timer.cancel();
} while (Math.abs(start - testtime) > EPSYLON);
collectGarbage(3);
}
private void collectGarbage(int times) {
for (int i = 0; i < times; i++) {
System.gc();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
/**
* Calculates the memory usage of a single element in a work queue. Based on
* Heinz Kabbutz' ideas
* (http://www.javaspecialists.eu/archive/Issue029.html).
*
* @return memory usage of a single {@link Runnable} element in the thread
* pools work queue
*/
public long calculateMemoryUsage() {
BlockingQueue queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
long mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
long mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = null;
collectGarbage(15);
mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
collectGarbage(15);
mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
}
/**
* Create your runnable task here.
*
* @return an instance of your runnable task under investigation
*/
protected abstract Runnable creatTask();
/**
* Return an instance of the queue used in the thread pool.
*
* @return queue instance
*/
protected abstract BlockingQueue createWorkQueue();
/**
* Calculate current cpu time. Various frameworks may be used here,
* depending on the operating system in use. (e.g.
* http://www.hyperic.com/products/sigar). The more accurate the CPU time
* measurement, the more accurate the results for thread count boundaries.
*
* @return current cpu time of current thread
*/
protected abstract long getCurrentThreadCPUTime();
}
然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:
package pool_size_calculate;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
@Override
protected Runnable creatTask() {
return new AsyncIOTask();
}
@Override
protected BlockingQueue createWorkQueue() {
return new LinkedBlockingQueue(1000);
}
@Override
protected long getCurrentThreadCPUTime() {
return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
}
public static void main(String[] args) {
PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
}
}
/**
* 自定义的异步IO任务
* @author Will
*
*/
class AsyncIOTask implements Runnable {
@Override
public void run() {
HttpURLConnection connection = null;
BufferedReader reader = null;
try {
String getURL = "http://baidu.com";
URL getUrl = new URL(getURL);
connection = (HttpURLConnection) getUrl.openConnection();
connection.connect();
reader = new BufferedReader(new InputStreamReader(
connection.getInputStream()));
String line;
while ((line = reader.readLine()) != null) {
// empty loop
}
}
catch (IOException e) {
} finally {
if(reader != null) {
try {
reader.close();
}
catch(Exception e) {
}
}
connection.disconnect();
}
}
}
得到的输出如下:
Target queue memory usage (bytes): 100000
createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 47181000
Wait time (nanos): 2952819000
Formula: 4 * 1 * (1 + 2952819000 / 47181000)
* Optimal thread count: 256
推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:
ThreadPoolExecutor pool =
new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
https://my.oschina.net/u/169390/blog/97415
任务被拒绝后,可通过实现RejectedExecutionHandler,来对被拒绝任务进行后续操作。
通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用
通过扩展线程池进行监控。通过继承线程池并重写线程池的beforeExecute,afterExecute和terminated方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。如:
1 |
protected void beforeExecute(Thread t, Runnable r) { } |