《Java程序性能优化》学习笔记之HashMap和LinkedHashMap

1.HashMap没啥可说的

2.LinkedHashMap是HashMap的子类,在HashMap的基础上加了一个链表,每次put元素都会往链表上加节点。

public LinkedHashMap(int initialCapacity, float loadFactor,boolean accessOrder):   accessOrder为true的时候按照元素最后访问时间排序(LRU算法:最近最久使用),为false则是按照插入顺序排序,默认为false.

LinkedHashMap 的get和put方法对HashMap加了些改动,会调整LinkedHashMap的链表结构。


以下摘自http://blog.csdn.net/ns_code/article/details/37867985


 关于LinkedHashMap的源码,给出以下几点比较重要的总结:

    1、从源码中可以看出,LinkedHashMap中加入了一个head头结点,将所有插入到该LinkedHashMap中的Entry按照插入的先后顺序依次加入到以head为头结点的双向循环链表的尾部。


    实际上就是HashMap和LinkedList两个集合类的存储结构的结合。在LinkedHashMapMap中,所有put进来的Entry都保存在如第一个图所示的哈希表中,但它又额外定义了一个以head为头结点的空的双向循环链表,每次put进来Entry,除了将其保存到对哈希表中对应的位置上外,还要将其插入到双向循环链表的尾部。

    2、LinkedHashMap由于继承自HashMap,因此它具有HashMap的所有特性,同样允许key和value为null。

    3、注意源码中的accessOrder标志位,当它false时,表示双向链表中的元素按照Entry插入LinkedHashMap到中的先后顺序排序,即每次put到LinkedHashMap中的Entry都放在双向链表的尾部,这样遍历双向链表时,Entry的输出顺序便和插入的顺序一致,这也是默认的双向链表的存储顺序;当它为true时,表示双向链表中的元素按照访问的先后顺序排列,可以看到,虽然Entry插入链表的顺序依然是按照其put到LinkedHashMap中的顺序,但put和get方法均有调用recordAccess方法(put方法在key相同,覆盖原有的Entry的情况下调用recordAccess方法),该方法判断accessOrder是否为true,如果是,则将当前访问的Entry(put进来的Entry或get出来的Entry)移到双向链表的尾部(key不相同时,put新Entry时,会调用addEntry,它会调用creatEntry,该方法同样将新插入的元素放入到双向链表的尾部,既符合插入的先后顺序,又符合访问的先后顺序,因为这时该Entry也被访问了),否则,什么也不做。

    4、注意构造方法,前四个构造方法都将accessOrder设为false,说明默认是按照插入顺序排序的,而第五个构造方法可以自定义传入的accessOrder的值,因此可以指定双向循环链表中元素的排序规则,一般要用LinkedHashMap实现LRU算法,就要用该构造方法,将accessOrder置为true。

    5、LinkedHashMap并没有覆写HashMap中的put方法,而是覆写了put方法中调用的addEntry方法和recordAccess方法,我们回过头来再看下HashMap的put方法:

[java]  view plain copy
  1. // 将“key-value”添加到HashMap中      
  2. public V put(K key, V value) {      
  3.     // 若“key为null”,则将该键值对添加到table[0]中。      
  4.     if (key == null)      
  5.         return putForNullKey(value);      
  6.     // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。      
  7.     int hash = hash(key.hashCode());      
  8.     int i = indexFor(hash, table.length);      
  9.     for (Entry e = table[i]; e != null; e = e.next) {      
  10.         Object k;      
  11.         // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!      
  12.         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {      
  13.             V oldValue = e.value;      
  14.             e.value = value;      
  15.             e.recordAccess(this);      
  16.             return oldValue;      
  17.         }      
  18.     }      
  19.   
  20.     // 若“该key”对应的键值对不存在,则将“key-value”添加到table中      
  21.     modCount++;    
  22.     //将key-value添加到table[i]处    
  23.     addEntry(hash, key, value, i);      
  24.     return null;      
  25. }      
    当要put进来的Entry的key在哈希表中已经在存在时,会调用recordAccess方法,当该key不存在时,则会调用addEntry方法将新的Entry插入到对应槽的单链表的头部。

    我们先来看recordAccess方法:

[java]  view plain copy
  1. //覆写HashMap中的recordAccess方法(HashMap中该方法为空),  
  2. //当调用父类的put方法,在发现插入的key已经存在时,会调用该方法,  
  3. //调用LinkedHashmap覆写的get方法时,也会调用到该方法,  
  4. //该方法提供了LRU算法的实现,它将最近使用的Entry放到双向循环链表的尾部,  
  5. //accessOrder为true时,get方法会调用recordAccess方法  
  6. //put方法在覆盖key-value对时也会调用recordAccess方法  
  7. //它们导致Entry最近使用,因此将其移到双向链表的末尾  
  8.       void recordAccess(HashMap m) {  
  9.           LinkedHashMap lm = (LinkedHashMap)m;  
  10.     //如果链表中元素按照访问顺序排序,则将当前访问的Entry移到双向循环链表的尾部,  
  11.     //如果是按照插入的先后顺序排序,则不做任何事情。  
  12.           if (lm.accessOrder) {  
  13.               lm.modCount++;  
  14.         //移除当前访问的Entry  
  15.               remove();  
  16.         //将当前访问的Entry插入到链表的尾部  
  17.               addBefore(lm.header);  
  18.           }  
  19.       }  
    该方法会判断accessOrder是否为true,如果为true,它会将当前访问的Entry(在这里指put进来的Entry)移动到双向循环链表的尾部,从而实现双向链表中的元素按照访问顺序来排序(最近访问的Entry放到链表的最后,这样多次下来,前面就是最近没有被访问的元素,在实现、LRU算法时,当双向链表中的节点数达到最大值时,将前面的元素删去即可,因为前面的元素是最近最少使用的),否则什么也不做。
    再来看addEntry方法:

[java]  view plain copy
  1. //覆写HashMap中的addEntry方法,LinkedHashmap并没有覆写HashMap中的put方法,  
  2. //而是覆写了put方法所调用的addEntry方法和recordAccess方法,  
  3. //put方法在插入的key已存在的情况下,会调用recordAccess方法,  
  4. //在插入的key不存在的情况下,要调用addEntry插入新的Entry  
  5.    void addEntry(int hash, K key, V value, int bucketIndex) {  
  6.     //创建新的Entry,并插入到LinkedHashMap中  
  7.        createEntry(hash, key, value, bucketIndex);  
  8.   
  9.        //双向链表的第一个有效节点(header后的那个节点)为近期最少使用的节点  
  10.        Entry eldest = header.after;  
  11.     //如果有必要,则删除掉该近期最少使用的节点,  
  12.     //这要看对removeEldestEntry的覆写,由于默认为false,因此默认是不做任何处理的。  
  13.        if (removeEldestEntry(eldest)) {  
  14.            removeEntryForKey(eldest.key);  
  15.        } else {  
  16.         //扩容到原来的2倍  
  17.            if (size >= threshold)  
  18.                resize(2 * table.length);  
  19.        }  
  20.    }  
  21.   
  22.    void createEntry(int hash, K key, V value, int bucketIndex) {  
  23.     //创建新的Entry,并将其插入到数组对应槽的单链表的头结点处,这点与HashMap中相同  
  24.        HashMap.Entry old = table[bucketIndex];  
  25.     Entry e = new Entry(hash, key, value, old);  
  26.        table[bucketIndex] = e;  
  27.     //每次插入Entry时,都将其移到双向链表的尾部,  
  28.     //这便会按照Entry插入LinkedHashMap的先后顺序来迭代元素,  
  29.     //同时,新put进来的Entry是最近访问的Entry,把其放在链表末尾 ,符合LRU算法的实现  
  30.        e.addBefore(header);  
  31.        size++;  
  32.    }  
    同样是将新的Entry插入到table中对应槽所对应单链表的头结点中,但可以看出,在createEntry中,同样把新put进来的Entry插入到了双向链表的尾部,从插入顺序的层面来说,新的Entry插入到双向链表的尾部,可以实现按照插入的先后顺序来迭代Entry,而从访问顺序的层面来说,新put进来的Entry又是最近访问的Entry,也应该将其放在双向链表的尾部。

    上面还有个removeEldestEntry方法,该方法如下:

[java]  view plain copy
  1.     //该方法是用来被覆写的,一般如果用LinkedHashmap实现LRU算法,就要覆写该方法,  
  2.     //比如可以将该方法覆写为如果设定的内存已满,则返回true,这样当再次向LinkedHashMap中put  
  3.     //Entry时,在调用的addEntry方法中便会将近期最少使用的节点删除掉(header后的那个节点)。  
  4.     protected boolean removeEldestEntry(Map.Entry eldest) {  
  5.         return false;  
  6.     }  
  7. }  
    该方法默认返回false,我们一般在用LinkedHashMap实现LRU算法时,要覆写该方法,一般的实现是,当设定的内存(这里指节点个数)达到最大值时,返回true,这样put新的Entry(该Entry的key在哈希表中没有已经存在)时,就会调用removeEntryForKey方法,将最近最少使用的节点删除(head后面的那个节点,实际上是最近没有使用)。
    6、LinkedHashMap覆写了HashMap的get方法:

[java]  view plain copy
  1. //覆写HashMap中的get方法,通过getEntry方法获取Entry对象。  
  2. //注意这里的recordAccess方法,  
  3. //如果链表中元素的排序规则是按照插入的先后顺序排序的话,该方法什么也不做,  
  4. //如果链表中元素的排序规则是按照访问的先后顺序排序的话,则将e移到链表的末尾处。  
  5.    public V get(Object key) {  
  6.        Entry e = (Entry)getEntry(key);  
  7.        if (e == null)  
  8.            return null;  
  9.        e.recordAccess(this);  
  10.        return e.value;  
  11.    }  
    先取得Entry,如果不为null,一样调用recordAccess方法,上面已经说得很清楚,这里不在多解释了。

    7、最后说说LinkedHashMap是如何实现LRU的。首先,当accessOrder为true时,才会开启按访问顺序排序的模式,才能用来实现LRU算法。我们可以看到,无论是put方法还是get方法,都会导致目标Entry成为最近访问的Entry,因此便把该Entry加入到了双向链表的末尾(get方法通过调用recordAccess方法来实现,put方法在覆盖已有key的情况下,也是通过调用recordAccess方法来实现,在插入新的Entry时,则是通过createEntry中的addBefore方法来实现),这样便把最近使用了的Entry放入到了双向链表的后面,多次操作后,双向链表前面的Entry便是最近没有使用的,这样当节点个数满的时候,删除的最前面的Entry(head后面的那个Entry)便是最近最少使用的Entry。

你可能感兴趣的:(读书笔记,面试题,java)