pytorch 卷积神经网络CNN实例——手写数字识别

数据集官网:http://yann.lecun.com/exdb/mnist/
参考:https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/401_CNN.py

代码包含自动下载数据集

import torch
from torch import nn,optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import os


batch_size = 200    #分批训练数据、每批数据量
learning_rate = 1e-2    #学习率
num_epoches = 20       #训练次数
DOWNLOAD_MNIST = False    #是否网上下载数据

# Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

train_dataset = datasets.MNIST(
    root = './mnist',
    train= True,        #download train data
    transform = transforms.ToTensor(),
    download=DOWNLOAD_MNIST
)
test_dataset = datasets.MNIST(
    root = './mnist',
    train= False,        #download test data
    transform = transforms.ToTensor(),
    download=DOWNLOAD_MNIST
)

#该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入
# 按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入
train_loader = DataLoader(train_dataset, batch_size = batch_size,shuffle=True)    #shuffle 是否打乱加载数据
test_loader = DataLoader(test_dataset,batch_size=batch_size,shuffle=False)

class CNN(nn.Module):
    def __init__(self,in_dim,n_class):
        super(CNN,self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_dim,6,kernel_size=3,stride=1,padding=1),   # input shape(1*28*28),(28+1*2-3)/1+1=28 卷积后输出(6*28*28)
                                                                    #输出图像大小计算公式:(n*n像素的图)(n+2p-k)/s+1
            nn.ReLU(True),        #激活函数
            nn.MaxPool2d(2,2),    # 28/2=14 池化后(6*14*14)
            nn.Conv2d(6,16,5,stride=1,padding=0),  # (14-5)/1+1=10 卷积后(16*10*10)
            nn.ReLU(True),
            nn.MaxPool2d(2,2)    #池化后(16*5*5)=400,the input of full connection
        )
        self.fc = nn.Sequential(   #full connection layers.
            nn.Linear(400,120),
            nn.Linear(120,84),
            nn.Linear(84,n_class)
        )
    def forward(self, x):
        out = self.conv(x)      #out shape(batch,16,5,5)
        out = out.view(out.size(0),-1)   #out shape(batch,400)
        out = self.fc(out)      #out shape(batch,10)
        return out

cnn = CNN(1,10)

if torch.cuda.is_available():       #是否可用GPU计算
     cnn = cnn.cuda()           #转换成可用GPU计算的模型

criterion = nn.CrossEntropyLoss()       #多分类用的交叉熵损失函数
optimizer = optim.Adam(cnn.parameters(), lr=learning_rate)
#常用优化方法有
#1.Stochastic Gradient Descent (SGD)
#2.Momentum
#3.AdaGrad
#4.RMSProp
#5.Adam (momentum+adaGrad)   效果较好

for epoch in range(num_epoches):
    print('epoch{}'.format(epoch+1))
    print('*'*10)
    running_loss = 0.0
    running_acc = 0.0
    #训练
    for i,data in enumerate(train_loader,1):
        img,label = data
        #判断是否可以使用GPU,若可以则将数据转化为GPU可以处理的格式。
        if torch.cuda.is_available():
            img = Variable(img).cuda()
            label = Variable(label).cuda()
        else:
            img = Variable(img)
            label = Variable(label)
        out = cnn(img)
        loss = criterion(out,label)
        running_loss += loss.item() * label.size(0)
        _, pred = torch.max(out,1)
        num_correct = (pred == label).sum()
        accuracy = (pred == label).float().mean()
        running_acc += num_correct.item()

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print('Finish {} epoch,Loss:{:.6f},Acc:{:.6f}'.format(
        epoch+1,running_loss/(len(train_dataset)),running_acc/len(train_dataset)
    ))

    #测试
    cnn.eval()     #eval()时,模型会自动把BN和DropOut固定住,不会取平均,而是用训练好的值
    eval_loss =0
    eval_acc = 0
    for i,data in enumerate(test_loader,1):
        img, label = data
        #判断是否可以使用GPU,若可以则将数据转化为GPU可以处理的格式。
        if torch.cuda.is_available():
            img = Variable(img).cuda()
            label = Variable(label).cuda()
        else:
            img = Variable(img)
            label = Variable(label)

        out = cnn(img)
        loss = criterion(out,label)
        eval_loss += loss.item() * label.size(0)
        _, pred = torch.max(out,1)
        num_correct = (pred == label).sum()
        accuracy = (pred == label).float().mean()
        eval_acc += num_correct.item()

    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_dataset)), eval_acc/len(test_dataset)))
    print()

你可能感兴趣的:(深度学习)