机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。
In [28]:
import os os.listdir('/home/kesci/input/')
Out[28]:
['fraeng6506', 'd2l9528', 'd2l6239']
In [1]:
import sys sys.path.append('/home/kesci/input/d2l9528/') import collections import d2l import zipfile from d2l.data.base import Vocab import time import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import data from torch import optim
将数据集清洗、转化为神经网络的输入minbatch
In [2]:
with open('/home/kesci/input/fraeng6506/fra.txt', 'r') as f: raw_text = f.read() print(raw_text[0:1000])
Go. Va ! CC-BY 2.0 (France) Attribution: tatoeba.org #2877272 (CM) & #1158250 (Wittydev) Hi. Salut ! CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #509819 (Aiji) Hi. Salut. CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #4320462 (gillux) Run! Cours ! CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906331 (sacredceltic) Run! Courez ! CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906332 (sacredceltic) Who? Qui ? CC-BY 2.0 (France) Attribution: tatoeba.org #2083030 (CK) & #4366796 (gillux) Wow! Ça alors ! CC-BY 2.0 (France) Attribution: tatoeba.org #52027 (Zifre) & #374631 (zmoo) Fire! Au feu ! CC-BY 2.0 (France) Attribution: tatoeba.org #1829639 (Spamster) & #4627939 (sacredceltic) Help! À l'aide ! CC-BY 2.0 (France) Attribution: tatoeba.org #435084 (lukaszpp) & #128430 (sysko) Jump. Saute. CC-BY 2.0 (France) Attribution: tatoeba.org #631038 (Shishir) & #2416938 (Phoenix) Stop! Ça suffit ! CC-BY 2.0 (France) Attribution: tato
In [3]:
def preprocess_raw(text): text = text.replace('\u202f', ' ').replace('\xa0', ' ') out = '' for i, char in enumerate(text.lower()): if char in (',', '!', '.') and i > 0 and text[i-1] != ' ': out += ' ' out += char return out text = preprocess_raw(raw_text) print(text[0:1000])
go . va ! cc-by 2 .0 (france) attribution: tatoeba .org #2877272 (cm) & #1158250 (wittydev) hi . salut ! cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #509819 (aiji) hi . salut . cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #4320462 (gillux) run ! cours ! cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906331 (sacredceltic) run ! courez ! cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906332 (sacredceltic) who? qui ? cc-by 2 .0 (france) attribution: tatoeba .org #2083030 (ck) & #4366796 (gillux) wow ! ça alors ! cc-by 2 .0 (france) attribution: tatoeba .org #52027 (zifre) & #374631 (zmoo) fire ! au feu ! cc-by 2 .0 (france) attribution: tatoeba .org #1829639 (spamster) & #4627939 (sacredceltic) help ! à l'aide ! cc-by 2 .0 (france) attribution: tatoeba .org #435084 (lukaszpp) & #128430 (sysko) jump . saute . cc-by 2 .0 (france) attribution: tatoeba .org #631038 (shishir) & #2416938 (phoenix) stop ! ça suffit ! cc-b
字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字符,代表不间断空白符nbsp(non-breaking space),超出gbk编码范围,是需要去除的特殊字符。再数据预处理的过程中,我们首先需要对数据进行清洗。
字符串---单词组成的列表
In [4]:
num_examples = 50000 source, target = [], [] for i, line in enumerate(text.split('\n')): if i > num_examples: break parts = line.split('\t') if len(parts) >= 2: source.append(parts[0].split(' ')) target.append(parts[1].split(' ')) source[0:3], target[0:3]
Out[4]:
([['go', '.'], ['hi', '.'], ['hi', '.']], [['va', '!'], ['salut', '!'], ['salut', '.']])
In [5]:
d2l.set_figsize() d2l.plt.hist([[len(l) for l in source], [len(l) for l in target]],label=['source', 'target']) d2l.plt.legend(loc='upper right');
单词组成的列表---单词id组成的列表
In [6]:
def build_vocab(tokens): tokens = [token for line in tokens for token in line] return d2l.data.base.Vocab(tokens, min_freq=3, use_special_tokens=True) src_vocab = build_vocab(source) len(src_vocab)
Out[6]:
3789
In [7]:
def pad(line, max_len, padding_token): if len(line) > max_len: return line[:max_len] return line + [padding_token] * (max_len - len(line)) pad(src_vocab[source[0]], 10, src_vocab.pad)
Out[7]:
[38, 4, 0, 0, 0, 0, 0, 0, 0, 0]
In [8]:
def build_array(lines, vocab, max_len, is_source): lines = [vocab[line] for line in lines] if not is_source: lines = [[vocab.bos] + line + [vocab.eos] for line in lines] array = torch.tensor([pad(line, max_len, vocab.pad) for line in lines]) valid_len = (array != vocab.pad).sum(1) #第一个维度 return array, valid_len
In [9]:
def load_data_nmt(batch_size, max_len): # This function is saved in d2l. src_vocab, tgt_vocab = build_vocab(source), build_vocab(target) src_array, src_valid_len = build_array(source, src_vocab, max_len, True) tgt_array, tgt_valid_len = build_array(target, tgt_vocab, max_len, False) train_data = data.TensorDataset(src_array, src_valid_len, tgt_array, tgt_valid_len) train_iter = data.DataLoader(train_data, batch_size, shuffle=True) return src_vocab, tgt_vocab, train_iter
In [10]:
src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size=2, max_len=8) for X, X_valid_len, Y, Y_valid_len, in train_iter: print('X =', X.type(torch.int32), '\nValid lengths for X =', X_valid_len, '\nY =', Y.type(torch.int32), '\nValid lengths for Y =', Y_valid_len) break
X = tensor([[ 5, 24, 3, 4, 0, 0, 0, 0], [ 12, 1388, 7, 3, 4, 0, 0, 0]], dtype=torch.int32) Valid lengths for X = tensor([4, 5]) Y = tensor([[ 1, 23, 46, 3, 3, 4, 2, 0], [ 1, 15, 137, 27, 4736, 4, 2, 0]], dtype=torch.int32) Valid lengths for Y = tensor([7, 7])
encoder:输入到隐藏状态
decoder:隐藏状态到输出
In [11]:
class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self).__init__(**kwargs) def forward(self, X, *args): raise NotImplementedError
In [12]:
class Decoder(nn.Module): def __init__(self, **kwargs): super(Decoder, self).__init__(**kwargs) def init_state(self, enc_outputs, *args): raise NotImplementedError def forward(self, X, state): raise NotImplementedError
In [13]:
class EncoderDecoder(nn.Module): def __init__(self, encoder, decoder, **kwargs): super(EncoderDecoder, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder def forward(self, enc_X, dec_X, *args): enc_outputs = self.encoder(enc_X, *args) dec_state = self.decoder.init_state(enc_outputs, *args) return self.decoder(dec_X, dec_state)
可以应用在对话系统、生成式任务中。
训练
预测
In [14]:
class Seq2SeqEncoder(d2l.Encoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqEncoder, self).__init__(**kwargs) self.num_hiddens=num_hiddens self.num_layers=num_layers self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout) def begin_state(self, batch_size, device): return [torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device), torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device)] def forward(self, X, *args): X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size) X = X.transpose(0, 1) # RNN needs first axes to be time # state = self.begin_state(X.shape[1], device=X.device) out, state = self.rnn(X) # The shape of out is (seq_len, batch_size, num_hiddens). # state contains the hidden state and the memory cell # of the last time step, the shape is (num_layers, batch_size, num_hiddens) return out, state
In [15]:
encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2) X = torch.zeros((4, 7),dtype=torch.long) output, state = encoder(X) output.shape, len(state), state[0].shape, state[1].shape
Out[15]:
(torch.Size([7, 4, 16]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))
In [16]:
class Seq2SeqDecoder(d2l.Decoder): def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs): super(Seq2SeqDecoder, self).__init__(**kwargs) self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout) self.dense = nn.Linear(num_hiddens,vocab_size) def init_state(self, enc_outputs, *args): return enc_outputs[1] def forward(self, X, state): X = self.embedding(X).transpose(0, 1) out, state = self.rnn(X, state) # Make the batch to be the first dimension to simplify loss computation. out = self.dense(out).transpose(0, 1) return out, state
In [17]:
decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2) state = decoder.init_state(encoder(X)) out, state = decoder(X, state) out.shape, len(state), state[0].shape, state[1].shape
Out[17]:
(torch.Size([4, 7, 10]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))
In [18]:
def SequenceMask(X, X_len,value=0): maxlen = X.size(1) mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None] X[~mask]=value return X
In [19]:
X = torch.tensor([[1,2,3], [4,5,6]]) SequenceMask(X,torch.tensor([1,2]))
Out[19]:
tensor([[1, 0, 0], [4, 5, 0]])
In [20]:
X = torch.ones((2,3, 4)) SequenceMask(X, torch.tensor([1,2]),value=-1)
Out[20]:
tensor([[[ 1., 1., 1., 1.], [-1., -1., -1., -1.], [-1., -1., -1., -1.]], [[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [-1., -1., -1., -1.]]])
In [21]:
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss): # pred shape: (batch_size, seq_len, vocab_size) # label shape: (batch_size, seq_len) # valid_length shape: (batch_size, ) def forward(self, pred, label, valid_length): # the sample weights shape should be (batch_size, seq_len) weights = torch.ones_like(label) weights = SequenceMask(weights, valid_length).float() self.reduction='none' output=super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label) return (output*weights).mean(dim=1)
In [22]:
loss = MaskedSoftmaxCELoss() loss(torch.ones((3, 4, 10)), torch.ones((3,4),dtype=torch.long), torch.tensor([4,3,0]))
Out[22]:
tensor([2.3026, 1.7269, 0.0000])
In [23]:
def train_ch7(model, data_iter, lr, num_epochs, device): # Saved in d2l model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) loss = MaskedSoftmaxCELoss() tic = time.time() for epoch in range(1, num_epochs+1): l_sum, num_tokens_sum = 0.0, 0.0 for batch in data_iter: optimizer.zero_grad() X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch] Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1 Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen) l = loss(Y_hat, Y_label, Y_vlen).sum() l.backward() with torch.no_grad(): d2l.grad_clipping_nn(model, 5, device) num_tokens = Y_vlen.sum().item() optimizer.step() l_sum += l.sum().item() num_tokens_sum += num_tokens if epoch % 50 == 0: print("epoch {0:4d},loss {1:.3f}, time {2:.1f} sec".format( epoch, (l_sum/num_tokens_sum), time.time()-tic)) tic = time.time()
In [24]:
embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0 batch_size, num_examples, max_len = 64, 1e3, 10 lr, num_epochs, ctx = 0.005, 300, d2l.try_gpu() src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt( batch_size, max_len,num_examples) encoder = Seq2SeqEncoder( len(src_vocab), embed_size, num_hiddens, num_layers, dropout) decoder = Seq2SeqDecoder( len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout) model = d2l.EncoderDecoder(encoder, decoder) train_ch7(model, train_iter, lr, num_epochs, ctx)
epoch 50,loss 0.093, time 38.2 sec epoch 100,loss 0.046, time 37.9 sec epoch 150,loss 0.032, time 36.8 sec epoch 200,loss 0.027, time 37.5 sec epoch 250,loss 0.026, time 37.8 sec epoch 300,loss 0.025, time 37.3 sec
In [25]:
def translate_ch7(model, src_sentence, src_vocab, tgt_vocab, max_len, device): src_tokens = src_vocab[src_sentence.lower().split(' ')] src_len = len(src_tokens) if src_len < max_len: src_tokens += [src_vocab.pad] * (max_len - src_len) enc_X = torch.tensor(src_tokens, device=device) enc_valid_length = torch.tensor([src_len], device=device) # use expand_dim to add the batch_size dimension. enc_outputs = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length) dec_state = model.decoder.init_state(enc_outputs, enc_valid_length) dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0) predict_tokens = [] for _ in range(max_len): Y, dec_state = model.decoder(dec_X, dec_state) # The token with highest score is used as the next time step input. dec_X = Y.argmax(dim=2) py = dec_X.squeeze(dim=0).int().item() if py == tgt_vocab.eos: break predict_tokens.append(py) return ' '.join(tgt_vocab.to_tokens(predict_tokens))
In [26]:
for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']: print(sentence + ' => ' + translate_ch7( model, sentence, src_vocab, tgt_vocab, max_len, ctx))
Go . => va ! Wow ! =>! I'm OK . => ça va . I won ! => j'ai gagné !
简单greedy search:
维特比算法:选择整体分数最高的句子(搜索空间太大) 集束搜索:
In [ ]: