TensorFlow(十六)CIFAR-10数据集分类

本次我们将会使用直接使用tensorflow中自带的模型对cifar10数据集进行分类、识别,通过前面的代码书写,我们了解了怎样构架一个卷积神经网络,但是大多数情况都是可以直接使用模型,然后微调参数来实现的。

下面我们通过cifar10来熟悉,正式训练一个神经网络的过程:

cifar数据集下载地址  http://www.cs.toronto.edu/~kriz/cifar.html

tf官方示例代码 https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10

同时也将第一次使用tensorboard

一、数据集分析

  下载完成数据集后解压后得到这样几个文件 

                         TensorFlow(十六)CIFAR-10数据集分类_第1张图片 

通过前面的学习 我们大致也知道了 meta文件类似于一个索引 记录了每个类别的英文名称 而在我们上次训练的ckpt文件中记录的是模型的地址 而下面几个文件顾名思义 我们也知道 是5个批次的训练集 和一个测试集 在这个数据集中通过阅读readme后 我们知道这个数据集 一个样本是3073个字节组成 其中第一个字节代表分类

 

二、使用tf训练cifar10数据集

在前面的minist数据集和猫狗大战的数据集中 我们其实都是没有过多的涉及到数据增强这个概念的 在深度学习中 数据量越大对于模型的训练样本就会是越优秀 我们需要使用数据增强的方法 来获得更多不同的数据集 常见的数据增强方法

旋转 | 反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;
翻转变换(flip): 沿着水平或者垂直方向翻转图像;
缩放变换(zoom): 按照一定的比例放大或者缩小图像;
平移变换(shift): 在图像平面上对图像以一定方式进行平移;
可以采用随机或人为定义的方式指定平移范围和平移步长, 沿水平或竖直方向进行平移. 改变图像内容的位置;
尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;
对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变. 对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;
噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;
颜色变化:在图像通道上添加随机扰动。
输入图像随机选择一块区域涂黑,参考《Random Erasing Data Augmentation》

但是值得注意的是数据增强的过程中不能改变数据的原有标签 例如minist中 6 和 9 总之数据增强能够增强模型的泛化能力 避免过拟合 (过拟合类似于学习的过于呆板 不能够变通 导致的预测结果不尽人意)

下载实例代码后我们可以看到这样几个文件

  TensorFlow(十六)CIFAR-10数据集分类_第2张图片

打开input文件可以看到:

这段代码的意义就是在于对于数据增强 通过以下的几步:

1. reshaped_image 将原始图片从32 * 32 剪裁至 24 * 24 而这个剪裁的方式是随机的可能是图像的任何一个位置

2.对图片进行水平翻转 但是翻转概率为百分之五十

3.将对比度和亮度做出随机改变

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Routine for decoding the CIFAR-10 binary file format."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import tensorflow_datasets as tfds

# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
IMAGE_SIZE = 24

# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000


def _get_images_labels(batch_size, split, distords=False):
  """Returns Dataset for given split."""
  dataset = tfds.load(name='cifar10', split=split)
  scope = 'data_augmentation' if distords else 'input'
  with tf.name_scope(scope):
    dataset = dataset.map(DataPreprocessor(distords), num_parallel_calls=10)
  # Dataset is small enough to be fully loaded on memory:
  dataset = dataset.prefetch(-1)
  dataset = dataset.repeat().batch(batch_size)
  iterator = dataset.make_one_shot_iterator()
  images_labels = iterator.get_next()
  images, labels = images_labels['input'], images_labels['target']
  tf.summary.image('images', images)
  return images, labels


class DataPreprocessor(object):
  """Applies transformations to dataset record."""

  def __init__(self, distords):
    self._distords = distords

  def __call__(self, record):
    """Process img for training or eval."""
    img = record['image']
    img = tf.cast(img, tf.float32)
    if self._distords:  # training
      # Randomly crop a [height, width] section of the image.
      img = tf.random_crop(img, [IMAGE_SIZE, IMAGE_SIZE, 3])
      # Randomly flip the image horizontally.
      img = tf.image.random_flip_left_right(img)
      # Because these operations are not commutative, consider randomizing
      # the order their operation.
      # NOTE: since per_image_standardization zeros the mean and makes
      # the stddev unit, this likely has no effect see tensorflow#1458.
      img = tf.image.random_brightness(img, max_delta=63)
      img = tf.image.random_contrast(img, lower=0.2, upper=1.8)
    else:  # Image processing for evaluation.
      # Crop the central [height, width] of the image.
      img = tf.image.resize_image_with_crop_or_pad(img, IMAGE_SIZE, IMAGE_SIZE)
    # Subtract off the mean and divide by the variance of the pixels.
    img = tf.image.per_image_standardization(img)
    return dict(input=img, target=record['label'])


def distorted_inputs(batch_size):
  """Construct distorted input for CIFAR training using the Reader ops.
  Args:
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  return _get_images_labels(batch_size, tfds.Split.TRAIN, distords=True)


def inputs(eval_data, batch_size):
  """Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  split = tfds.Split.TEST if eval_data == 'test' else tfds.Split.TRAIN
  return _get_images_labels(batch_size, split)

 四、识别模型

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Builds the CIFAR-10 network.
Summary of available functions:
 # Compute input images and labels for training. If you would like to run
 # evaluations, use inputs() instead.
 inputs, labels = distorted_inputs()
 # Compute inference on the model inputs to make a prediction.
 predictions = inference(inputs)
 # Compute the total loss of the prediction with respect to the labels.
 loss = loss(predictions, labels)
 # Create a graph to run one step of training with respect to the loss.
 train_op = train(loss, global_step)
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

import tensorflow as tf

import cifar10_input

FLAGS = tf.app.flags.FLAGS

# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Number of images to process in a batch.""")
tf.app.flags.DEFINE_boolean('use_fp16', True,
                            """Train the model using fp16.""")

# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL


# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999     # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0      # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1  # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1       # Initial learning rate.

# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'


def _activation_summary(x):
  """Helper to create summaries for activations.
  Creates a summary that provides a histogram of activations.
  Creates a summary that measures the sparsity of activations.
  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.summary.histogram(tensor_name + '/activations', x)
  tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))


def _variable_on_cpu(name, shape, initializer):
  """Helper to create a Variable stored on CPU memory.
  Args:
    name: name of the variable
    shape: list of ints
    initializer: initializer for Variable
  Returns:
    Variable Tensor
  """
  with tf.device('/cpu:0'):
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
  return var


def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.
  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.
  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.
  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var


def distorted_inputs():
  """Construct distorted input for CIFAR training using the Reader ops.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  images, labels = cifar10_input.distorted_inputs(batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
  images, labels = cifar10_input.inputs(eval_data=eval_data, batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


def inference(images):
  """Build the CIFAR-10 model.
  Args:
    images: Images returned from distorted_inputs() or inputs().
  Returns:
    Logits.
  """
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
  with tf.variable_scope('conv1') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 3, 64],
                                         stddev=5e-2,
                                         wd=None)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv1)

  # pool1
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')
  # norm1
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')

  # conv2
  with tf.variable_scope('conv2') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 64, 64],
                                         stddev=5e-2,
                                         wd=None)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv2)

  # norm2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')

  # local3
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.keras.layers.Flatten()(pool2)
    dim = reshape.get_shape()[1].value
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)

  # local4
  with tf.variable_scope('local4') as scope:
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)

  # linear layer(WX + b),
  # We don't apply softmax here because
  # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  # and performs the softmax internally for efficiency.
  with tf.variable_scope('softmax_linear') as scope:
    weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                          stddev=1/192.0, wd=None)
    biases = _variable_on_cpu('biases', [NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)

  return softmax_linear


def loss(logits, labels):
  """Add L2Loss to all the trainable variables.
  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]
  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')


def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.
  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.summary.scalar(l.op.name + ' (raw)', l)
    tf.summary.scalar(l.op.name, loss_averages.average(l))

  return loss_averages_op


def train(total_loss, global_step):
  """Train CIFAR-10 model.
  Create an optimizer and apply to all trainable variables. Add moving
  average for all trainable variables.
  Args:
    total_loss: Total loss from loss().
    global_step: Integer Variable counting the number of training steps
      processed.
  Returns:
    train_op: op for training.
  """
  # Variables that affect learning rate.
  num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

  # Decay the learning rate exponentially based on the number of steps.
  lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                  global_step,
                                  decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR,
                                  staircase=True)
  tf.summary.scalar('learning_rate', lr)

  # Generate moving averages of all losses and associated summaries.
  loss_averages_op = _add_loss_summaries(total_loss)

  # Compute gradients.
  with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)
    grads = opt.compute_gradients(total_loss)

  # Apply gradients.
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

  # Add histograms for trainable variables.
  for var in tf.trainable_variables():
    tf.summary.histogram(var.op.name, var)

  # Add histograms for gradients.
  for grad, var in grads:
    if grad is not None:
      tf.summary.histogram(var.op.name + '/gradients', grad)

  # Track the moving averages of all trainable variables.
  variable_averages = tf.train.ExponentialMovingAverage(
      MOVING_AVERAGE_DECAY, global_step)
  with tf.control_dependencies([apply_gradient_op]):
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

  return variables_averages_op

 

之后执行

python cifar10_train.py --train_dir D:\cifar-10-python\log_modelcd  --data_dir D:\cifar-10-python\cifar-10-batches-py

data_dir是保存训练数据集的文件夹

train_dir 是保存日志 模型的文件夹

五、自动下载数据集的脚本 命令行输出

                      TensorFlow(十六)CIFAR-10数据集分类_第3张图片

                       TensorFlow(十六)CIFAR-10数据集分类_第4张图片 

六、 训练日志和tensorboard

打开新的cmd切换到当前目录执行

tensorboard --logdir D:\cifar-10-python\log_model

输入 http://localhost:6006/

即可访问tensorboard可视化界面

                             TensorFlow(十六)CIFAR-10数据集分类_第5张图片

关于tensorboard的使用方法 日后的更新中会继续呈现

你可能感兴趣的:(TensorFlow与深度学习)