洛谷 P2797 Facer的魔法 解题报告

P2797 Facer的魔法

题意:给你n个数,你可以选若干个数,使得平均数减中位数最大

数据范围:\(n \le 10^5\)


原题CF626E

很容易想到枚举一个中位数,但是如果选取的数字的个数是偶数个该怎么办呢?

下面证明选取奇数个时一定可以作为答案

当选取一个数字时,答案为0,所以最优答案不可能小于0,这点很重要

现在,我们假设选取了\(2k\)个有序的数成为了答案

设中位数为\(M_0=\frac{a_k+a_{k+1}}{2}\),平均数为\(A_0=\frac{\sum a}{2k}\)

拿掉一个\(a_{k+1}\)后答案会变差吗

设拿掉一个\(a_{k+1}\)

\(M_1=a_k,A_1=\frac{\sum a-a_{k+1}}{2k-1}\)

\(\Delta M=M_1-M_0=\frac{a_k-a_{k+1}}{2}\)

\(\Delta A=\frac{A_0-a_{k+1}}{2k-1}\)

现在要证\(\Delta A \ge \Delta M\)

因为最优答案大于0,所以有

\(2 \times A_0 \ge a_k+a_{k+1}\)

继续证明

$\Delta A \ge \Delta M $

\(\Rightarrow \frac{A_0-a_{k+1}}{2k-1}+\frac{a_{k+1}-a_k}{2} \ge 0\)

\(\Rightarrow \frac{2A_0-2a_{k+1}+(2k-1)(a_{k+1}-a_k)}{(2k-1) \times 2} \ge 0\)

\(\Rightarrow a_k-a_{k+1} +(2k-1)(a_{k+1}-a_k) \ge 0\)

这一步用了上面的东西,并把正的分母去掉了

\(\Rightarrow 2 \times (k-1)(a_{k+1}-a_k) \ge 0\)


然而仅仅枚举中位数,就算我们贪心每次选大的数也需要\(O(n^2)\)的时间啊

我们从枚举的中位数的左边第一位和右边最后一位 一位一位的向左多选

因为选取的数字越来越小,所以平均数的增量肯定越来越小,其实这个不那么显然,但是证起来比较麻烦

而大家基本上可以理解理解啦

增量减少,值一定有一个峰顶,这是一个单峰函数,我们可以通过三分法找到这个峰顶

注意在整数域上三分要注意边界问题

我们可以这么写
\(lmid=(l*2+r)/3,rmid=(l+r*2+2)/3\)


Code:

#include 
#include 
const int N=1e5+10;
double ans=0;int a[N],f[N],n;
double max(double x,double y){return x>y?x:y;}
int min(int x,int y){return x

2018.9.6

转载于:https://www.cnblogs.com/butterflydew/p/9596868.html

你可能感兴趣的:(洛谷 P2797 Facer的魔法 解题报告)