1.实现了以顶点顺序表、边链表为存储结构的邻接表;
2.实现了图的创建(有向/无向/图/网)、边的增删操作、深度优先递归/非递归遍历、广度优先遍历的算法;
3.采用顶点对象列表、边(弧)对象列表的方式,对图的创建进行初始化;引用 "ObjArrayList.h"头文件,头文件可参看之前博文“数据结构之顺序列表(支持对象元素)”代码;
4.深度优先遍历分别采用递归/非递归算法;非递归中用到的栈,引用"LinkStack.h"头文件,头文件可参看之前博文“数据结构之栈”代码;
5.广度优先遍历采用队列方式实现;用到的队列,引用 "LinkQueue.h"头文件,头文件可参看之前博文“数据结构之队列”代码;
6.测试代码中以有向网的所有带权边作为边的初始化数据,选择图类型(DG, UDG, DN, UDN)可创建成不同类型的图。
7.优劣分析:
7.1.(优势)邻接表存储结构,相比邻接矩阵,消除了无邻接关系顶点的边存储空间;
7.2.(优势)邻接表比邻接矩阵更容易访问某顶点的邻接顶点;
7.3.(优势)邻接表比邻接矩阵更易于统计边总数,无需逐行逐列遍历;
7.4.(劣势)在确定两顶点间是否有边的搜索过程中,邻接表不如邻接矩阵可直接寻址快,反而需要顶点到边链的遍历;
7.5.(劣势)邻接矩阵在删除顶点时,只需清除对应行列数据即可;而邻接表在清除顶点指向的边链后,还需遍历整个边表,清除所有邻接于此顶点的边结点;
7.6.(不足)邻接表在统计有向图出度时容易,只需遍历依附此顶点的边链;却在统计其入度时,需要遍历整个边表,比较麻烦;可采用十字链表(邻接表与逆邻接表的结合)解决这个问题;
7.7.(不足)邻接表在无向图的存储中,属于行列对称矩阵形式,因此会有一半重复的边数据,故可采用邻接多重表,只存储一半边,来优化存储。
深度优先遍历序列(从 v1 顶点开始):
1.无向图/网:v1-v2-v3-v5-v4-v6-v7
2.有向图/网:v1-v2-v5-v3-v4-v6-v7
广度优先遍历序列(从 v2 顶点开始):
1.无向图/网:v2-v1-v3-v5-v4-v6-v7
2.有向图/网:v2-v5 后序无法遍历
注:有向图的遍历 是遵循出度方向遍历的,若无出度方向,则遍历终止。
//文件名:"GraphAdjList.h"
#pragma once
#ifndef GRAPHADJLISL_H_
#define GRAPHADJLISL_H_
#include
#include "ObjArrayList.h"
using namespace std;
/*
. 图(邻接表实现) Graph Adjacency List
. 相关术语:
. 顶点 Vertex ; 边 Arc ;权 Weight ;
. 有向图 Digraph ;无向图 Undigraph ;
. 有向网 Directed Network ;无向网 Undirected Network ;
. 存储结构:
. 1.顶点表只能采用顺序结构。(因为若采用链式结构,顶点结点定义与边表结点定义就相互引用,无法定义)
. 2.边表采用链表结构。
*/
class GraphAdjList
{
/*
. 边表(链表)结点
*/
struct ArcNode
{
int adjVex; //邻接顶点所在表中下标
int weight; //边权重
ArcNode * next; //下一条边
};
/*
. 顶点表(顺序表)结点
*/
struct VNode
{
string name; //顶点名
ArcNode * first; //指向的第一个依附该顶点的顶点边结点
};
public:
/*
. 图 种类
*/
enum GraphType
{
DG, //有向图,默认 0
UDG, //无向图,默认 1
DN, //有向网,默认 2
UDN //无向网,默认 3
};
/*
. 边(弧)数据,注:供外部初始化边数据使用
*/
struct ArcData
{
string Tail; //弧尾
string Head; //弧头
int Weight; //权重
};
private:
static const int _MAX_VERTEX_NUM = 10; //支持最大顶点数
VNode vexs[_MAX_VERTEX_NUM]; //顶点表
int vexs_visited[_MAX_VERTEX_NUM]; //顶点访问标记数组:0|未访问 1|已访问
int vexNum; //顶点数
int arcNum; //边数
int type; //图种类
void _CreateVexSet(ObjArrayList * vexs); //创建顶点集合
void _CreateDG(ObjArrayList * arcsList); //创建有向图
void _CreateUDG(ObjArrayList * arcsList); //创建无向图
void _CreateDN(ObjArrayList * arcsList); //创建有向网
void _CreateUDN(ObjArrayList * arcsList); //创建无向网
int _Locate(string vertex); //定位顶点元素位置
void _InsertArc(int tail, int head, int weight); //插入边(元操作,不分有向/无向)
void _DeleteArc(int tail, int head); //删除边(元操作,不分有向/无向)
void _DFS_R(int index); //深度优先遍历 递归
void _DFS(int index); //深度优先遍历 非递归
public:
GraphAdjList(int type); //构造函数:初始化图种类
~GraphAdjList(); //析构函数
void Init(ObjArrayList * vexs, ObjArrayList * arcsList); //初始化顶点、边数据为 图|网
void InsertArc(ArcData * arcData); //插入边(含有向/无向操作)
void DeleteArc(ArcData * arcData); //删除边(含有向/无向操作)
void Display(); //显示 图|网
void Display_DFS_R(string *vertex); //从指定顶点开始,深度优先 递归 遍历
void Display_DFS(string *vertex); //从指定顶点开始,深度优先 非递归 遍历
void Display_BFS(string *vertex); //从指定顶点开始,广度优先遍历
};
//文件名:"GraphAdjList.cpp"
#include "stdafx.h"
#include
#include "ObjArrayList.h"
#include "LinkQueue.h"
#include "LinkStack.h"
#include "GraphAdjList.h"
using namespace std;
GraphAdjList::GraphAdjList(int type)
{
/*
. 构造函数:初始化图类型
*/
this->type = type;
this->vexNum = 0;
this->arcNum = 0;
}
GraphAdjList::~GraphAdjList()
{
/*
. 析构函数:销毁图
*/
}
void GraphAdjList::Init(ObjArrayList * vexs, ObjArrayList * arcsList)
{
/*
. 初始化顶点、边数据,并构建 图|网
. 入参:
. vexs: 顶点 列表
. arcsList: 边数据 列表
*/
//1.创建顶点集
_CreateVexSet(vexs);
//2.根据图类型,创建指定的图
switch (this->type)
{
case DG:
_CreateDG(arcsList); break;
case UDG:
_CreateUDG(arcsList); break;
case DN:
_CreateDN(arcsList); break;
case UDN:
_CreateUDN(arcsList); break;
default:
break;
}
}
void GraphAdjList::_CreateVexSet(ObjArrayList * vexs)
{
/*
. 创建顶点集合
*/
string vertex = "";
//顶点最大数校验
if (vexs->Length() > this->_MAX_VERTEX_NUM)
{
return;
}
//遍历顶点表,无重复插入顶点,并计数顶点数
for (int i = 0; i < vexs->Length(); i++)
{
vertex = *vexs->Get(i);
if (_Locate(vertex) == -1)
{
this->vexs[this->vexNum].name = vertex;
this->vexs[this->vexNum].first = NULL;
this->vexNum++;
}
}
}
void GraphAdjList::_CreateDG(ObjArrayList * arcsList)
{
/*
. 创建有向图
. 邻接矩阵为 非对称边
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入边
_InsertArc(tail, head, 0);
}
}
void GraphAdjList::_CreateUDG(ObjArrayList * arcsList)
{
/*
. 创建无向图
. 邻接矩阵为 对称边
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入对称边
_InsertArc(tail, head, 0);
_InsertArc(head, tail, 0);
}
}
void GraphAdjList::_CreateDN(ObjArrayList * arcsList)
{
/*
. 创建有向网
. 邻接矩阵为 非对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入边
_InsertArc(tail, head, arcData->Weight);
}
}
void GraphAdjList::_CreateUDN(ObjArrayList * arcsList)
{
/*
. 创建无向网
. 邻接矩阵为 对称矩阵
*/
//初始化临时 边对象
ArcData * arcData = NULL;
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
//遍历边数据列表
for (int i = 0; i < arcsList->Length(); i++)
{
//按序获取边(弧)
arcData = arcsList->Get(i);
//定位(或设置)边的两端顶点位置
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//插入对称边
_InsertArc(tail, head, arcData->Weight);
_InsertArc(head, tail, arcData->Weight);
}
}
int GraphAdjList::_Locate(string vertex)
{
/*
. 定位顶点元素位置
. 后期可改成【字典树】,顶点数超过100个后定位顶点位置可更快
*/
//遍历定位顶点位置
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
if (vertex == this->vexs[i].name)
{
return i;
}
}
//cout << endl << "顶点[" << vertex << "]不存在。" << endl;
return -1;
}
void GraphAdjList::_InsertArc(int tail, int head, int weight)
{
/*
. 插入边(元操作,不分有向/无向)
*/
//边结点指针:初始化为 弧尾 指向的第一个边
ArcNode * p = this->vexs[tail].first;
//初始化 前一边结点的指针
ArcNode * q = NULL;
//重复边布尔值
bool exist = false;
//1.边的重复性校验
while (p != NULL)
{
//若已存在该边,则标记为 存在 true
if (p->adjVex == head)
{
exist = true;
break;
}
//若不是该边,继续下一个边校验
q = p;
p = p->next;
}
//2.1.如果边存在,则跳过,不做插入
if (exist)
return;
//2.2.边不存在时,创建边
ArcNode * newArc = new ArcNode();
newArc->adjVex = head;
newArc->weight = weight;
newArc->next = NULL;
//3.1.插入第一条边
if (q == NULL)
{
this->vexs[tail].first = newArc;
}
//3.2.插入后序边
else
{
q->next = newArc;
}
//4.边 计数
this->arcNum++;
}
void GraphAdjList::InsertArc(ArcData * arcData)
{
/*
. 插入边(含有向/无向操作)
*/
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//根据图类型,插入边
switch (this->type)
{
case DG:
_InsertArc(tail, head, 0);
break;
case UDG:
_InsertArc(tail, head, 0);
_InsertArc(head, tail, 0);
break;
case DN:
_InsertArc(tail, head, arcData->Weight);
break;
case UDN:
_InsertArc(tail, head, arcData->Weight);
_InsertArc(head, tail, arcData->Weight);
break;
default:
break;
}
}
void GraphAdjList::_DeleteArc(int tail, int head)
{
/*
. 删除边(元操作,不分有向/无向)
*/
//边结点指针:初始化为 弧尾 指向的第一个边
ArcNode * p = this->vexs[tail].first;
//初始化 前一边结点的指针
ArcNode * q = NULL;
//1.遍历查找边
while (p != NULL)
{
//若存在该边,则结束循环
if (p->adjVex == head)
{
break;
}
//若不是该边,继续下一个边
q = p;
p = p->next;
}
//2.1.边不存在
if (p == NULL)
{
cout << endl << "边[" << this->vexs[head].name << "->" << this->vexs[head].name << "]不存在。" << endl;
return;
}
//2.2.边存在,删除边
//2.2.1.若为第一条边
if (q == NULL)
{
this->vexs[tail].first = p->next;
}
//2.2.2.非第一条边
else
{
q->next = p->next;
}
//3.释放 p
delete p;
}
void GraphAdjList::DeleteArc(ArcData * arcData)
{
/*
. 删除边(含有向/无向操作)
*/
//初始化 Tail Head 顶点下标索引
int tail = 0, head = 0;
tail = _Locate(arcData->Tail);
head = _Locate(arcData->Head);
//根据图类型,删除边
switch (this->type)
{
case DG:
_DeleteArc(tail, head);
break;
case UDG:
_DeleteArc(tail, head);
_DeleteArc(head, tail);
break;
case DN:
_DeleteArc(tail, head);
break;
case UDN:
_DeleteArc(tail, head);
_DeleteArc(head, tail);
break;
default:
break;
}
}
void GraphAdjList::Display()
{
/*
. 显示 图|网
*/
//初始化边表结点指针
ArcNode * p = NULL;
cout << endl << "邻接表:" << endl;
//遍历顶点表
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
//空顶点(在删除顶点的操作后会出现此类情况)
if (this->vexs[i].name == "")
{
continue;
}
//输出顶点
cout << "[" << i << "]" << this->vexs[i].name << " ";
//遍历输出边顶点
p = this->vexs[i].first;
while (p != NULL)
{
cout << "[" << p->adjVex << "," << p->weight << "] ";
p = p->next;
}
cout << endl;
}
}
void GraphAdjList::_DFS_R(int index)
{
/*
. 深度优先遍历 递归
*/
//1.访问顶点,并标记已访问
cout << this->vexs[index].name << " ";
this->vexs_visited[index] = 1;
//2.遍历访问其相邻顶点
ArcNode * p = this->vexs[index].first;
int adjVex = 0;
while (p != NULL)
{
adjVex = p->adjVex;
//当顶点未被访问过时,可访问
if (this->vexs_visited[adjVex] != 1)
{
_DFS_R(adjVex);
}
p = p->next;
}
}
void GraphAdjList::Display_DFS_R(string *vertex)
{
/*
. 从指定顶点开始,深度优先 递归 遍历
*/
//1.判断顶点是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化顶点访问数组
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.深度优先遍历 递归
cout << "深度优先遍历(递归):(从顶点" << *vertex << "开始)" << endl;
_DFS_R(index);
}
void GraphAdjList::_DFS(int index)
{
/*
. 深度优先遍历 非递归
*/
//1.访问第一个结点,并标记为 已访问
cout << this->vexs[index].name << " ";
vexs_visited[index] = 1;
//初始化 边结点 栈
LinkStack * s = new LinkStack();
//初始化边结点 指针
ArcNode * p = this->vexs[index].first;
//2.寻找下一个(未访问的)邻接结点
while (!s->Empty() || p != NULL)
{
//2.1.未访问过,则访问 (纵向遍历)
if (vexs_visited[p->adjVex] != 1)
{
//访问结点,标记为访问,并将其入栈
cout << this->vexs[p->adjVex].name << " ";
vexs_visited[p->adjVex] = 1;
s->Push(p);
//指针 p 移向 此结点的第一个邻接结点
p = this->vexs[p->adjVex].first;
}
//2.2.已访问过,移向下一个边结点 (横向遍历)
else
p = p->next;
//3.若无邻接点,则返回上一结点层,并出栈边结点
if (p == NULL)
{
p = s->Pop();
}
}
//释放 栈
delete s;
}
void GraphAdjList::Display_DFS(string *vertex)
{
/*
. 从指定顶点开始,深度优先 非递归 遍历
*/
//1.判断顶点是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化顶点访问数组
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.深度优先遍历 递归
cout << "深度优先遍历(非递归):(从顶点" << *vertex << "开始)" << endl;
_DFS(index);
}
void GraphAdjList::Display_BFS(string *vertex)
{
/*
. 从指定顶点开始,广度优先遍历
*/
//1.判断顶点是否存在
int index = _Locate(*vertex);
if (index == -1)
return;
//2.初始化顶点访问数组
for (int i = 0; i < this->_MAX_VERTEX_NUM; i++)
{
this->vexs_visited[i] = 0;
}
//3.广度优先遍历
cout << "广度优先遍历:(从顶点" << *vertex << "开始)" << endl;
//3.1.初始化队列
LinkQueue * vexQ = new LinkQueue();
//3.2.访问开始顶点,并标记访问、入队
cout << this->vexs[index].name << " ";
this->vexs_visited[index] = 1;
vexQ->EnQueue(new int(index));
//3.3.出队,并遍历邻接顶点(下一层次),访问后入队
ArcNode * p = NULL;
int adjVex = 0;
while (vexQ->GetHead() != NULL)
{
index = *vexQ->DeQueue();
p = this->vexs[index].first;
//遍历邻接顶点
while (p != NULL)
{
adjVex = p->adjVex;
//未访问过的邻接顶点
if (this->vexs_visited[adjVex] != 1)
{
//访问顶点,并标记访问、入队
cout << this->vexs[adjVex].name << " ";
this->vexs_visited[adjVex] = 1;
vexQ->EnQueue(new int(adjVex));
}
p = p->next;
}
}
//4.释放队列
int * e;
while (vexQ->GetHead() != NULL)
{
e = vexQ->DeQueue();
delete e;
}
delete vexQ;
}
//文件名:"GraphAdjList_Test.cpp"
#include "stdafx.h"
#include
#include "GraphAdjList.h"
#include "ObjArrayList.h"
using namespace std;
int main()
{
//初始化顶点数据
string * v1 = new string("v1");
string * v2 = new string("v2");
string * v3 = new string("v3");
string * v4 = new string("v4");
string * v5 = new string("v5");
string * v6 = new string("v6");
string * v7 = new string("v7");
ObjArrayList * vexs = new ObjArrayList();
vexs->Add(v1);
vexs->Add(v2);
vexs->Add(v3);
vexs->Add(v4);
vexs->Add(v5);
vexs->Add(v6);
vexs->Add(v7);
//初始化边(弧)数据
GraphAdjList::ArcData * arc1 = new GraphAdjList::ArcData{ "v1", "v2", 2 };
GraphAdjList::ArcData * arc2 = new GraphAdjList::ArcData{ "v1", "v3", 3 };
GraphAdjList::ArcData * arc3 = new GraphAdjList::ArcData{ "v1", "v4", 4 };
GraphAdjList::ArcData * arc4 = new GraphAdjList::ArcData{ "v3", "v1", 5 };
GraphAdjList::ArcData * arc5 = new GraphAdjList::ArcData{ "v3", "v2", 6 };
GraphAdjList::ArcData * arc6 = new GraphAdjList::ArcData{ "v3", "v5", 7 };
GraphAdjList::ArcData * arc7 = new GraphAdjList::ArcData{ "v2", "v5", 8 };
GraphAdjList::ArcData * arc8 = new GraphAdjList::ArcData{ "v4", "v6", 9 };
GraphAdjList::ArcData * arc9 = new GraphAdjList::ArcData{ "v4", "v7", 9 };
GraphAdjList::ArcData * arc10 = new GraphAdjList::ArcData{ "v6", "v7", 9 };
ObjArrayList * arcsList = new ObjArrayList();
arcsList->Add(arc1);
arcsList->Add(arc2);
arcsList->Add(arc3);
arcsList->Add(arc4);
arcsList->Add(arc5);
arcsList->Add(arc6);
arcsList->Add(arc7);
arcsList->Add(arc8);
arcsList->Add(arc9);
arcsList->Add(arc10);
//测试1:无向图
cout << endl << "无向图初始化:" << endl;
GraphAdjList * udg = new GraphAdjList(GraphAdjList::UDG);
udg->Init(vexs, arcsList);
udg->Display();
//1.1.深度优先遍历
cout << endl << "无向图深度优先遍历序列:(递归)" << endl;
udg->Display_DFS_R(v1);
cout << endl << "无向图深度优先遍历序列:(非递归)" << endl;
udg->Display_DFS(v1);
//1.2.广度优先遍历
cout << endl << "无向图广度优先遍历序列:" << endl;
udg->Display_BFS(v2);
//1.3.插入新边
cout << endl << "无向图新边:" << endl;
udg->InsertArc(new GraphAdjList::ArcData{ "v7", "v1", 8 });
udg->Display();
//1.4.删除边
cout << endl << "无向图删除边arc9:" << endl;
udg->DeleteArc(arc9);
udg->Display();
//测试2:有向图
cout << endl << "有向图:" << endl;
GraphAdjList * dg = new GraphAdjList(GraphAdjList::DG);
dg->Init(vexs, arcsList);
dg->Display();
//2.1.深度优先遍历
cout << endl << "有向图深度优先遍历序列:(递归)" << endl;
dg->Display_DFS_R(v1);
cout << endl << "有向图深度优先遍历序列:(非递归)" << endl;
dg->Display_DFS(v1);
//2.2.广度优先遍历
cout << endl << "有向图广度优先遍历序列:" << endl;
dg->Display_BFS(v2);
//测试:无向网
cout << endl << "无向网:" << endl;
GraphAdjList * udn = new GraphAdjList(GraphAdjList::UDN);
udn->Init(vexs, arcsList);
udn->Display();
//测试:有向网
cout << endl << "有向网:" << endl;
GraphAdjList * dn = new GraphAdjList(GraphAdjList::DN);
dn->Init(vexs, arcsList);
dn->Display();
return 0;
}