【论文整理】Super Resolution/超分辨率论文、代码、综述大集合!

代码库

Single-Image-Super-Resolution

Super-Resolution.Benckmark

Video-Super-Resolution

VideoSuperResolution

Awesome Super-Resolution

代码库:

repo Framework
EDSR-PyTorch PyTorch
Image-Super-Resolution Keras
image-super-resolution Keras
Super-Resolution-Zoo MxNet
super-resolution Keras
neural-enhance Theano
srez Tensorflow
waifu2x Torch
BasicSR PyTorch
super-resolution PyTorch
VideoSuperResolution Tensorflow
video-super-resolution Pytorch
MMSR PyTorch

数据机

Note this table is referenced from here.

Name Usage Link Comments
Set5 Test download jbhuang0604
SET14 Test download jbhuang0604
BSD100 Test download jbhuang0604
Urban100 Test download jbhuang0604
Manga109 Test website
SunHay80 Test download jbhuang0604
BSD300 Train/Val download
BSD500 Train/Val download
91-Image Train download Yang
DIV2K2017 Train/Val website NTIRE2017
Flickr2K Train download
Real SR Train/Val website NTIRE2019
Waterloo Train website
VID4 Test download 4 videos
MCL-V Train website 12 videos
GOPRO Train/Val website 33 videos, deblur
CelebA Train website Human faces
Sintel Train/Val website Optical flow
FlyingChairs Train website Optical flow
Vimeo-90k Train/Test website 90k HQ videos
SR-RAW Train/Test website raw sensor image dataset

数据集合

Benckmark and DIV2K: Set5, Set14, B100, Urban100, Manga109, DIV2K2017 include bicubic downsamples with x2,3,4,8

SR_testing_datasets: Test: Set5, Set14, B100, Urban100, Manga109, Historical; Train: T91,General100, BSDS200

论文

非神经网络方法

SCSR: TIP2010, Jianchao Yang et al.paper, code

ANR: ICCV2013, Radu Timofte et al. paper, code

A+: ACCV 2014, Radu Timofte et al. paper, code

IA: CVPR2016, Radu Timofte et al. paper

SelfExSR: CVPR2015, Jia-Bin Huang et al. paper, code

NBSRF: ICCV2015, Jordi Salvador et al. paper

RFL: ICCV2015, Samuel Schulter et al paper, code

深度学习方法

Note this table is referenced from here

Model Published Code Keywords
SRCNN ECCV14 Keras Kaiming
RAISR arXiv - Google, Pixel 3
ESPCN CVPR16 Keras Real time/SISR/VideoSR
VDSR CVPR16 Matlab Deep, Residual
DRCN CVPR16 Matlab Recurrent
DRRN CVPR17 Caffe, PyTorch Recurrent
LapSRN CVPR17 Matlab Huber loss
IRCNN CVPR17 Matlab
EDSR CVPR17 PyTorch NTIRE17 Champion
BTSRN CVPR17 - NTIRE17
SelNet CVPR17 - NTIRE17
TLSR CVPR17 - NTIRE17
SRGAN CVPR17 Tensorflow 1st proposed GAN
VESPCN CVPR17 - VideoSR
MemNet ICCV17 Caffe
SRDenseNet ICCV17 -, PyTorch Dense
SPMC ICCV17 Tensorflow VideoSR
EnhanceNet ICCV17 TensorFlow Perceptual Loss
PRSR ICCV17 TensorFlow an extension of PixelCNN
AffGAN ICLR17 -
MS-LapSRN TPAMI18 Matlab Fast LapSRN
DCSCN arXiv Tensorflow
IDN CVPR18 Caffe Fast
DSRN CVPR18 TensorFlow Dual state,Recurrent
RDN CVPR18 Torch Deep, BI-BD-DN
SRMD CVPR18 Matlab Denoise/Deblur/SR
xUnit CVPR18 PyTorch Spatial Activation Function
DBPN CVPR18 PyTorch NTIRE18 Champion
WDSR CVPR18 PyTorch,TensorFlow NTIRE18 Champion
ProSRN CVPR18 PyTorch NTIRE18
ZSSR CVPR18 Tensorflow Zero-shot
FRVSR CVPR18 PDF VideoSR
DUF CVPR18 Tensorflow VideoSR
TDAN arXiv - VideoSR,Deformable Align
SFTGAN CVPR18 PyTorch
CARN ECCV18 PyTorch Lightweight
RCAN ECCV18 PyTorch Deep, BI-BD-DN
MSRN ECCV18 PyTorch
SRFeat ECCV18 Tensorflow GAN
TSRN ECCV18 Pytorch
ESRGAN ECCV18 PyTorch PRIM18 region 3 Champion
EPSR ECCV18 PyTorch PRIM18 region 1 Champion
PESR ECCV18 PyTorch ECCV18 workshop
FEQE ECCV18 Tensorflow Fast
NLRN NIPS18 Tensorflow Non-local, Recurrent
SRCliqueNet NIPS18 - Wavelet
CBDNet arXiv Matlab Blind-denoise
TecoGAN arXiv Tensorflow VideoSR GAN
RBPN CVPR19 PyTorch VideoSR
SRFBN CVPR19 PyTorch Feedback
AdaFM CVPR19 PyTorch Adaptive Feature Modification Layers
MoreMNAS arXiv - Lightweight,NAS
FALSR arXiv TensorFlow Lightweight,NAS
Meta-SR CVPR19 PyTorch Arbitrary Magnification
AWSRN arXiv PyTorch Lightweight
OISR CVPR19 PyTorch ODE-inspired Network
DPSR CVPR19 PyTorch
DNI CVPR19 PyTorch
MAANet arXiv Multi-view Aware Attention
RNAN ICLR19 PyTorch Residual Non-local Attention
FSTRN CVPR19 - VideoSR, fast spatio-temporal residual block
MsDNN arXiv TensorFlow NTIRE19 real SR 21th place
SAN CVPR19 Pytorch Second-order Attention,cvpr19 oral
EDVR CVPRW19 Pytorch Video, NTIRE19 video restoration and enhancement champions
Ensemble for VSR CVPRW19 - VideoSR, NTIRE19 video SR 2nd place
TENet arXiv Pytorch a Joint Solution for Demosaicking, Denoising and Super-Resolution
MCAN arXiv Pytorch Matrix-in-matrix CAN, Lightweight
IKC&SFTMD CVPR19 - Blind Super-Resolution
SRNTT CVPR19 TensorFlow Neural Texture Transfer
RawSR CVPR19 TensorFlow Real Scene Super-Resolution, Raw Images
resLF CVPR19 Light field
CameraSR CVPR19 realistic image SR
ORDSR TIP model DCT domain SR
U-Net CVPRW19 NTIRE19 real SR 2nd place, U-Net,MixUp,Synthesis
DRLN arxiv Densely Residual Laplacian Super-Resolution
EDRN CVPRW19 Pytorch NTIRE19 real SR 9th places
FC2N arXiv Fully Channel-Concatenated
GMFN BMVC2019 Pytorch Gated Multiple Feedback
CNN&TV-TV Minimization BMVC2019 TV-TV Minimization
HRAN arXiv Hybrid Residual Attention Network
PPON arXiv code Progressive Perception-Oriented Network
SROBB ICCV19 Targeted Perceptual Loss
RankSRGAN ICCV19 PyTorch oral, rank-content loss
edge-informed ICCVW19 PyTorch Edge-Informed Single Image Super-Resolution
s-LWSR arxiv Lightweight
DNLN arxiv Video SR Deformable Non-local Network
MGAN arxiv Multi-grained Attention Networks
IMDN ACM MM 2019 PyTorch AIM19 Champion
ESRN arxiv NAS
PFNL ICCV19 Tensorflow VideoSR oral,Non-Local Spatio-Temporal Correlations
EBRN ICCV19 Embedded Block Residual Network
Deep SR-ITM ICCV19 matlab SDR to HDR, 4K SR
feature SR ICCV19 Super-Resolution for Small Object Detection
STFAN ICCV19 PyTorch Video Deblurring
KMSR ICCV19 PyTorch GAN for blur-kernel estimation
CFSNet ICCV19 PyTorch Controllable Feature
FSRnet ICCV19 Multi-bin Trainable Linear Units
SAM+VAM ICCVW19

综述:

[1] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue. Deep Learning for Single Image Super-Resolution: A Brief Review. arxiv, 2018. paper

[2]Saeed Anwar, Salman Khan, Nick Barnes. A Deep Journey into Super-resolution: A survey. arxiv, 2019.paper

[3]Wang, Z., Chen, J., & Hoi, S. C. (2019). Deep learning for image super-resolution: A survey. arXiv preprint arXiv:1902.06068.paper

你可能感兴趣的:(深度学习,神经网络,计算机视觉)