- 【论文研读】Better Together:Unifying Datalog and Equality Saturation
被制作时长两年半的个人练习生
Datalog编程语言Datalog程序分析
最近研究ReassociatePass整的头大,翻两篇Datalog的论文看看。今天看的一篇是比较新的文章,23年4月贴到arxiv上的。本文的主要贡献是提出了egglog,将Datalog和Eqsat结合起来,继承了Datalog的efficientincrementalexecution,cooperatinganalysisandlattice目录Introduction部分BackGrou
- 经典论文研读:《Bigtable: A Distributed Storage System for Structured Data》
WanderingScorpion
论文研读检索技术论文研读数据存储原力计划
一概述BigTable是以大神JeffreyDean为首的Google团队在2006年公开的分布式存储系统,是Google“三驾马车”论文中(GFS、MapReduce、BigTable)中最后公开的。在BigTable论文中,Google构思、设计并实现了一套支持结构化数据存储的超大容量分布式存储系统。BigTable中关于数据模型、底层存储技术和架构模型的设计思路直到今日仍被奉为经典,下面我们
- 深度学习学习笔记-论文研读4-基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法
丰。。
神经网络论文研读学报论文研读学习边缘计算算法人工智能深度学习
本人学识浅薄,如有理解不到位的地方还请大佬们指出,相互学习,共同进步概念引入强化学习DQN算法边缘计算边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可
- 通俗科普文:贝叶斯优化与SMBO、高斯过程回归、TPE(附新书)
科技州与数据州
以下文章来源于SimpleAI,作者郭必扬贝叶斯优化是AutoML中的重要概念,近年来变得很火热。作为一种重要的基于先验的调参/策略选择技术,贝叶斯的应用范围也很广。但这个概念对于初次接触的同学可能较难理解,经过数天的论文研读、博客/教程/代码查阅,我总结了这篇科普文,也手绘了一些示意图,希望尽量在一篇文章内、通俗易懂地讲清楚什么是贝叶斯优化。本文目录:理清基本概念的关系各种超参数调节方法的对比G
- 【论文研读】基于卷积神经网络的图像局部风格迁移
lexonT
自2015年Gatys首次提出神经艺术风格迁移框架以来,图像风格迁移逐渐成为计算机图形学和计算机视觉领域的一个研究热点,但是当前针对图像风格迁移的研究大多难以提取图像中的局部进行风格迁移,而将重心放在图像全局风格迁移上,针对局部风格迁移这一研究领域上的空白,浙江工业大学缪永伟与浙江理工大学、中科院自动化研究所合作发表了《基于卷积神经网络的图像局部风格迁移》一文。文中提出了一种基于卷积神经网络的图像
- 2024 1.6~1.12 周报
shengMio
周报深度学习机器学习
一、上周工作论文研读二、本周计划思考毕业论文要用到的方法或者思想,多查多看积累可取之处。学习ppt和上周组会内容、卷积神经网络。三、完成情况1.数据训练的方式1.1迁移学习迁移学习是一种机器学习方法,把任务A训练出的模型作为初始模型,并使用它来改进新目标任务B的学习。即通过从已学习的相关任务中转移知识来改进学习的新任务。这可以包括使用模型作为特征提取器,微调模型,或使用模型的部分作为初始化。找到目
- OpenFWI 论文研读
shengMio
论文深度学习
论文title:OPENFWI:Large-scaleMulti-structuralBenchmarkDatasetsforFullWaveformInversion——OPENFWI:基于全波形反演的大规模多结构基准数据集摘要Abstract:全波形反演(FWI)在地球物理中被广泛用于从地震数据中重建高分辨率速度图。OPENFWI由12个数据集(共2.1TB)组成,这些数据集是从多个来源合成的
- 【论文研读】Detection of redundant expressions: A precise, efficient, and pragmatic algorithm in SSA.
被制作时长两年半的个人练习生
编程语言c++编译器值编号程序优化LLVM
继续研读GVN领域的文章,又是一篇重要的文章,此文提出的算法已经在LLVM中实现为NewGVN。能够找到所有Herbrand等值关系且时间复杂度为polynomial。目录IntroductionTheProblemTerminologyBasicConceptAlgorithmCorrectnessproofandcomplexityanalysisExperimentalresultsRela
- 【论文研读】Furthering Datalog in the pursuit of program analysis
被制作时长两年半的个人练习生
编程语言linux运维服务器
最近准备开一个新坑,记录一下读过的一些论文,主要聚焦笔者在阅读过程中的感悟,一些重点算法的理解,以及笔者觉得可以改进的地方。本文为系列的第一篇,试试水先。本文选择的论文是FurtheringDataloginthepursuitofprogramanalysis。是一篇剑桥大学的博士论文,发现此文的契机是在对valuenumbering技术进行跟踪时发现了一篇2004年的APolynomial-T
- 论文研读:基于统计重加权的方法减少通用回复
飞剑客阿飞
论文研读:基于统计重加权的方法减少通用回复会议名称:EMNLP2018文章题目:TowardsLessGenericResponsesinNeuralConversationModels:AStatisticalRe-weightingMethod原文链接:https://link.zhihu.com/?target=https%3A//www.paperweekly.site/papers/24
- 【论文研读】Minimax and Biobjective Portfolio Selection Based on Collaborative Neurodynamic Optimization
如果皮卡会coding
论文研读投资组合论文阅读minimax
MinimaxandBiobjectivePortfolioSelectionBasedonCollaborativeNeurodynamicOptimization基于协同神经动力学优化的极大极小双目标投资组合选择文章目录MinimaxandBiobjectivePortfolioSelectionBasedonCollaborativeNeurodynamicOptimization一.基本信
- 【10大专题,2.8w字详解】:从张量开始到GPT的《动手学深度学习》要点笔记
hadiii
gpt深度学习笔记人工智能transformer
《动手学深度学习PyTorch版》复习要点全记录专注于查漏补缺、巩固基础,这份笔记将带你深入理解深度学习的核心概念。通过一系列精心整理的小专题,逐步构建起你的AI知识框架。从最基础的张量操作,到最新的GPT模型,每个专题都配备了直观的图示和详细的公式解析。初版笔记以《动手学深度学习PyTorch版》书籍为基准,随后将根据视频讲解和最新论文研读内容进行实时更新。所有专题都配备了精美的图表和公式推导。
- 论文研读:基于统计重加权的方法减少通用回复
飞剑客阿飞
论文研读:基于统计重加权的方法减少通用回复会议名称:EMNLP2018文章题目:TowardsLessGenericResponsesinNeuralConversationModels:AStatisticalRe-weightingMethod原文链接:https://link.zhihu.com/?target=https%3A//www.paperweekly.site/papers/24
- 基于边缘计算的电力智慧物联系统设计与实现(论文研读)
椒椒。
边缘计算人工智能大数据
基于边缘计算的电力智慧物联系统设计与实现摘要:0引言1电力智慧物联系统架构设计1.1总体框架设计1.2物模型设计1.3边缘计算1.4交互协议1.5面向云边协同的智能生态1.5.1应用开发1.5.2智能生态1.5.3云边协同2实验验证及试点建设2.1实验测试2.1.1功能型测试2.1.2非功能性测试2.2现场试点建设3结语参考文献:基于边缘计算的电力智慧物联系统设计与实现.-论文研读崔恒志1,蒋承伶
- FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning[论文研读笔记2023的ICLR]
白兔1205
汇报论文人工智能
原文链接:https://arxiv.org/abs/2205.07246代码链接:https://github.com/microsoft/Semi-supervised-learning作者视频讲解链接:https://www.bilibili.com/video/BV14L411k7De/?spm_id_from=333.999.0.0&vd_source=90e27a3caa4ef021d
- 论文研读|An Embarrassingly Simple Approach for Intellectual Property Rights Protection on RNNs
_Meilinger_
神经网络水印论文研读AI安全神经网络水印语言模型白盒水印版权保护模型水印RNN
目录论文信息文章简介研究动机研究方法白盒水印水印信号构造黑盒水印触发集构造水印嵌入实验结果保真度&有效性鲁棒性抗移除攻击(RemovalAttack)抗模型剪枝(ModelPruning)抗微调攻击(Fine-Tuning)抗水印覆写攻击(Overwriting)抗伪造攻击(Anti-AmbiguityAttacl)隐蔽性迁移性CaseStudy方法评估相关文献论文信息论文名称:AnEmbarra
- pointNet复现、论文和代码研读
苏钟白
python
文章目录论文复现论文研读1.动机2.模型结构![在这里插入图片描述](https://img-blog.csdnimg.cn/286bc0bfc06846f690adde4979366977.png)3.实验效果4.总结代码研读模型什么时候保存,保存到哪里?模型训练的数据集?为什么是在CPU上运行的?运行的时候有输入gpu号如何测试模型的语义分割的效果?如何测试模型的分类效果?论文复现https:
- RFNet模型论文和代码研读
苏钟白
python
论文研读论文的代码:https://github.com/AHupuJR/RFNet论文动机截止到2020年,很少有实时的基于RGBD的分割模型。本文提出一种基于RGB-D的实时分割模型,可用于自动驾驶场景。模型的结构在编码器部分,两个独立的分支分别提取RGB的特征和深度的特征,RGB分支为主分支,深度分支为下级分支。每个分支都采用的ResNet18为骨干网络。深度分支输出的特征会通过AFC模块融
- 论文研读|Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
_Meilinger_
论文研读神经网络水印AI安全神经网络水印模型水印黑盒水印后门攻击深度学习
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果保真度(Functionality-Preserving)&有效性(Effectiveness)鲁棒性(Unremovability)抗微调攻击抗伪造攻击(OwnershipPiracy)抗迁移学习ImageNet方法评估相关文献论文信息论文名称:TurningYourWeaknessIntoaStrength:Watermark
- 论文研读|Watermarking Deep Neural Networks for Embedded Systems
_Meilinger_
神经网络水印论文研读人工智能AI安全网络空间安全神经网络水印模型水印黑盒水印后门攻击
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果方法评估有效性(Effectiveness)保真度(Fidelity)嵌入容量(Payload)假阳性(FalsePositiveRate)安全性(Security)篡改攻击(TamperingAttack)伪造攻击(GhostSignatureAttack)相关文献论文信息论文名称:WatermarkingDeepNeuralN
- 论文研读|Protecting Intellectual Property of Deep Neural Networks with Watermarking
_Meilinger_
神经网络水印论文研读人工智能深度学习机器学习AI安全神经网络水印黑盒水印后门攻击
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果有效性(Effectiveness)高效性(ConvergeSpeed)保真度(Functionality)鲁棒性(Robustness)Anti-剪枝攻击(Pruning)Anti-微调攻击(Fine-tuning)安全性(Security)Anti-模型逆向攻击(ModelInversion)方法评估相关文献论文信息论文名称:
- 论文研读 - share work - QPipe:一种并行流水线的查询执行引擎
yzs87
java开发语言
QPipe:一种并行流水线的查询执行引擎QPipe:ASimultaneouslyPipelinedRelationalQueryEngine关系型数据库通常独立执行并发的查询,每个查询都需执行一系列相关算子。为了充分利用并发查询中的数据扫描与计算,现有研究提出了丰富的技术:从缓存磁盘页以构建物化视图到优化多查询。然而,现有研究所提出的思想本质上受现代以查询为中心的引擎设计哲学所限制。理想状态下,
- MV-Map论文研读
高的好想出去玩啊
论文研读深度学习人工智能
MV-MapMV-Map:OffboardHD-MapGenerationwithMulti-viewConsistency论文:https://arxiv.org/pdf/2305.08851.pdfcode:https://github.com/ZiYang-xie/MV-Map代码未开源总体网络结构简述论文首次提出以非车载的方式产生高精度地图。可以视为在HDMapNet的优化版本,多三阶段网
- BEVFromer论文研读
高的好想出去玩啊
论文研读深度学习
1.总体结构上图为BEVFormer在t时刻的网络结构。图(a)表示的是BEVFormer的encoder层。BEVFormer有6个encoder层,每一个encoder除了本文自定义的三个组件外都和传统的transformers结果一致。自定义的三个组件分别是网格状的BEVqueries,TSA和SCA。其中BEVqueries的参数是可学习的,它通过注意力机制查询多相机视角下的BEV空间特征
- 论文研读|生成式跨模态隐写发展综述
_Meilinger_
文本隐写论文研读生成式隐写跨模态隐写SteganographyImageTextSpeech
前言:本文介绍近5年来生成式跨模态隐写领域的相关工作。相关阅读:生成式文本隐写发展综述不同于文本隐写,跨模态隐写需要考虑不同模态间的相关性,常见的跨模态场景有:Image-to-Text(如图像描述),Text-to-Speech(如语音助手),Text-to-Image(如按文作画)等。下面对基于深度学习的生成式跨模态隐写相关工作进行介绍。[1]-基于图像描述的文本信息隐藏(北京邮电大学学报,2
- 【连载】深度学习笔记14:CNN经典论文研读之Le-Net5及其Tensorflow实现
linux那些事
在前几次笔记中,笔者基本上将卷积神经网络的基本原理给讲完了。从本次笔记开始,笔者在深度学习笔记中会不定期的对CNN发展过程中的经典论文进行研读并推送研读笔记。今天笔者就和大家一起学习卷积神经网络和深度学习发展历史上具有奠基性的经典论文之一的关于LeNet-5网络一文。LeNet-5是由具有卷积神经网络之父之美誉的YannLeCun在1998年发表在IEEE上面的一篇Gradient-basedle
- TimeGAN学习记录
河马小白
GAN学习
一、学习TimeGAN主要参考的链接如下:(1)知乎上的TimeGAN论文研读(2)csdn上的一篇博客,论文阅读:《TimeSeriesGenerativeAdversrialNetworks》(TimeGAN,时间序列GAN)(3)时间序列丨基于TimeGAN模型生成时间序列数据及其Python实践二、我的理解TimeGAN无预测功能,只是对数据进行了分段处理并可以捕捉时序特征,但效果并不好?
- 第三周
YYYlan
论文研读研究方向:插画与动画叠加效果的运用与表现1.付博宇.动画前期设计中插画艺术的应用[J].明日风尚,2020(06):33-34.https://kns.cnki.net/KXReader/Detail?autoLogin=1&TIMESTAMP=637381423548572500&DBCODE=CJFD&TABLEName=CJFDLASN2020&FileName=MRFS202006
- 神经网络论文研读-多模态方向-综述研读(上)
丰。。
学报论文研读神经网络论文研读机器学习笔记神经网络人工智能深度学习
翻译以机翻为主原文目录前言图1:LMU印章(左)风格转移到梵高的向日葵绘画(中)并与提示混合-梵高,向日葵-通过CLIP+VGAN(右)。在过去的几年中,自然语言处理(NLP)和计算机视觉中使用的方法取得了一些突破。除了对单模态模型的这些改进之外,大规模多模态方法已成为一个非常活跃的研究领域。在本次研讨会中,我们回顾了这些方法,并试图创建一个坚实的该领域的概述,从当前最先进的方法分别是深度学习的两
- 深度学习神经网络学习笔记-自然语言处理方向-论文研读-情感分析/文本分类-textcnn
丰。。
深度学习神经网络-NLP方向神经网络论文研读神经网络自然语言处理深度学习人工智能神经网络语言模型
本文目录概念引入摘要大意TextCNN模型的结构正则化手段该模型的超参数研究成果概念引入逻辑回归线性回归时间序列分析神经网络self-attention与softmax的推导word2evcglove摘要大意在使用简单的CNN模型在预训练词向量的基础上进行微调就可以在文本分类任务上就能得到很好的结果。通过对词向量进行微调而获得的任务指向的词向量就能得到更好的结果。同时也提出了一种即使用静态预训练词
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st