Python实现:ID3算法 1.决策树构造:trees.py from math import log import operator #简单的鉴定函数 def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing','flippers']
return dataSet, labels #计算给定的数据集的香农熵 def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) return shannonEnt #按照给定特征划分数据集 def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet #选择最好的数据划分方式 def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0; bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if (infoGain >= bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature #字典对象存储了classList中每个类标签出现的频率,最后利用operator操作键值排序,返回出现次数最多的分类名称。 def majorityCnt(classList): classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] #创建树的函数代码 def createTree(dataSet,labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] #类别完全相同时停止继续划分 if len(dataSet[0]) == 1: return majorityCnt(classList) #遍历完所有特征值时返回出现次数最多的类别 bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel:{}} subLabels = labels[:] del(subLabels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) #得到列表包含的所有属性 for value in uniqueVals:
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree def classify(inputTree,featLabels,testVec): firstStr = list(inputTree.keys())[0] secondDict = inputTree[firstStr] featIndex = featLabels.index(firstStr) key = testVec[featIndex] valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict): classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel #使用pickle模块存储决策树 def storeTree(inputTree,filename): import pickle fw = open(filename,'wb') pickle.dump(inputTree,fw) fw.close() def grabTree(filename): import pickle fr = open(filename,"rb") return pickle.load(fr) 2.绘制树型图:treePlotter.py import matplotlib.pyplot as plt #使用文本注解绘制树节点 #定义文本框和箭头格式 decisionNode = dict(boxstyle="sawtooth", fc="0.8") leafNode = dict(boxstyle="round4", fc="0.8") arrow_args = dict(arrowstyle="<-") #获取叶节点的数目和树的层数 def getNumLeafs(myTree): numLeafs = 0 firstStr = list(myTree.keys())[0] #这里书中有错误。用list转变为列表后才能用【】提取键值 secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': numLeafs += getNumLeafs(secondDict[key]) else: numLeafs +=1 return numLeafs
def getTreeDepth(myTree): maxDepth = 0 firstStr =list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth #绘制带箭头的注解 def plotNode(nodeTxt, centerPt, parentPt, nodeType): createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args ) #在父子节点间填充文本信息 def plotMidText(cntrPt, parentPt, txtString): xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30) #计算宽与高 def plotTree(myTree, parentPt, nodeTxt): numLeafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = list(myTree.keys())[0] cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt) #标记子节点的属性 plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr] plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD #减少y偏移 for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': plotTree(secondDict[key],cntrPt,str(key)) else: plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #主函数 def createPlot(inTree): fig = plt.figure(1, facecolor= 'white') fig.clf() axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0 plotTree(inTree, (0.5,1.0), '') plt.show()
def retrieveTree(i): listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}, {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}} ] return listOfTrees[i] |