【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现

本博文涉及以下:六
目录:

Zero:导入数据集

一、检测人脸

二、检测狗狗

三、从头实现CNN实现狗狗分类

四、迁移VGG16实现狗狗分类

五、迁移ResNet_50实现狗狗分类

六、自己实现狗狗分类

 

六、自己实现狗狗分类整体流程

实现一个算法,它的输入为图像的路径,它能够区分图像是否包含一个人、狗或两者都不包含,然后:

  • 如果从图像中检测到一只,返回被预测的品种。
  • 如果从图像中检测到,返回最相像的狗品种。
  • 如果两者都不能在图像中检测到,输出错误提示。

可以自己编写检测图像中人类与狗的函数,可以随意使用已经完成的 face_detector 和 dog_detector 函数。使用在步骤5的CNN来预测狗品种。

下面提供了算法的示例输出,也可以自由地设计模型!

1、加载数据集

from sklearn.datasets import load_files       
from keras.utils import np_utils
import numpy as np
from glob import glob

# 定义函数来加载train,test和validation数据集
def load_dataset(path):
    data = load_files(path)
    dog_files = np.array(data['filenames'])
    dog_targets = np_utils.to_categorical(np.array(data['target']), 133)
    return dog_files, dog_targets

# 加载train,test和validation数据集
train_files, train_targets = load_dataset('dogImages/train')
valid_files, valid_targets = load_dataset('dogImages/valid')
test_files, test_targets = load_dataset('dogImages/test')

# 加载狗品种列表
dog_names = [item[20:-1] for item in sorted(glob("dogImages/train/*/"))]

# 打印数据统计描述
print('There are %d total dog categories.' % len(dog_names))
print('There are %s total dog images.\n' % len(np.hstack([train_files, valid_files, test_files])))
print('There are %d training dog images.' % len(train_files))
print('There are %d validation dog images.' % len(valid_files))
print('There are %d test dog images.'% len(test_files))

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第1张图片

 

2、检测是否有狗狗

from keras.applications.resnet50 import ResNet50

# 定义ResNet50模型
ResNet50_model = ResNet50(weights='imagenet')

from keras.preprocessing import image                  
from tqdm import tqdm

def path_to_tensor(img_path):
    # 用PIL加载RGB图像为PIL.Image.Image类型
    img = image.load_img(img_path, target_size=(224, 224))
    # 将PIL.Image.Image类型转化为格式为(224, 224, 3)的3维张量
    x = image.img_to_array(img)
    # 将3维张量转化为格式为(1, 224, 224, 3)的4维张量并返回
    return np.expand_dims(x, axis=0)

def paths_to_tensor(img_paths):
    list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]
    return np.vstack(list_of_tensors)

from keras.applications.resnet50 import preprocess_input, decode_predictions
def ResNet50_predict_labels(img_path):
    # 返回img_path路径的图像的预测向量
    img = preprocess_input(path_to_tensor(img_path))
    return np.argmax(ResNet50_model.predict(img))

def dog_detector(img_path):
    prediction = ResNet50_predict_labels(img_path)
    return ((prediction <= 268) & (prediction >= 151)) 

 

3、检测是否有人

import cv2                
import matplotlib.pyplot as plt                        
%matplotlib inline                               

# 提取预训练的人脸检测模型
face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')

# 如果img_path路径表示的图像检测到了脸,返回"True" 
def face_detector(img_path):
    img = cv2.imread(img_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray)
    return len(faces) > 0

 

4、得到bottleneck特征:ResNet50

bottleneck_features = np.load('bottleneck_features/DogResnet50Data.npz')
train_Resnet50 = bottleneck_features['train']
valid_Resnet50 = bottleneck_features['valid']
test_Resnet50 = bottleneck_features['test']

 

5、模型建立、编译、训练和测试

### TODO: 定义你的框架
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D
from keras.layers import Dropout, Flatten, Dense
from keras.models import Sequential

Resnet50_model = Sequential()
Resnet50_model.add(GlobalAveragePooling2D(input_shape=train_Resnet50.shape[1:]))
Resnet50_model.add(Dense(133, activation='softmax'))

Resnet50_model.summary()

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第2张图片

### TODO: 编译模型
Resnet50_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
### TODO: 训练模型
from keras.callbacks import ModelCheckpoint  

checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.Resnet50.hdf5', 
                               verbose=1, save_best_only=True)
Resnet50_model.fit(train_Resnet50, train_targets, 
          validation_data=(valid_Resnet50, valid_targets),
          epochs=20, batch_size=20, callbacks=[checkpointer], verbose=1)
### TODO: 加载具有最佳验证loss的模型权重
Resnet50_model.load_weights('saved_models/weights.best.Resnet50.hdf5')
### TODO: 在测试集上计算分类准确率
Resnet50_predictions = [np.argmax(Resnet50_model.predict(np.expand_dims(feature, axis=0))) for feature in test_Resnet50]

# 报告测试准确率
test_accuracy = 100*np.sum(np.array(Resnet50_predictions)==np.argmax(test_targets, axis=1))/len(Resnet50_predictions)
print('Test accuracy: %.4f%%' % test_accuracy)

 

 6、测试新图片

### TODO: 写一个函数,该函数将图像的路径作为输入
### 然后返回此模型所预测的狗的品种
from extract_bottleneck_features import *

def Resnet50_predict_breed(img_path):
    # 提取bottleneck特征
    bottleneck_feature = extract_Resnet50(path_to_tensor(img_path))
    # 获取预测向量
    predicted_vector = Resnet50_model.predict(bottleneck_feature)
    # 返回此模型预测的狗的品种
    return dog_names[np.argmax(predicted_vector)]
def LastPredict(img_path):
    img = cv2.imread(img_path)
    # 将BGR图像转变为RGB图像以打印
    cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.imshow(cv_rgb)
    plt.show()
    if face_detector(img_path) > 0:
        print("Hello, Human")
        print("You look like a ... in dog world")
        print(Resnet50_predict_breed(img_path))
    elif dog_detector(img_path) == True:
        print("Hello, Dog")
        print("You are a ... ")
        print(Resnet50_predict_breed(img_path))
    else:
        print("Error Input")

(1)6张狗狗:只有第一张被误判为人类,但是检测的相似狗狗对了。另外5张没有错误。

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第3张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第4张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第5张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第6张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第7张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第8张图片

 

(2)5张人的图片:5张没有误判的。另外,我像Poodle。

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第9张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第10张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第11张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第12张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第13张图片

 

(3)3张猫咪:第二张错误,被误判为人类。其他2张正确。

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第14张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第15张图片

【深度学习图像识别课程】毕业项目:狗狗种类识别(4)代码实现_第16张图片

你可能感兴趣的:(深度学习)