- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- Spark MLlib 特征工程系列—特征转换VectorSizeHint
不二人生
Spark实战spark-ml机器学习spark
SparkMLlib特征工程系列—特征转换VectorSizeHintVectorSizeHint是Spark提供的一个特征转换器,用于指定向量列的大小(即维度)。在一些特征转换和建模过程中,要求输入的向量必须有固定的大小。当数据中包含不同大小的向量时,Spark可能无法自动推断出向量的正确大小。这时,VectorSizeHint可以显式地声明向量的大小,确保后续的操作能够顺利进行。为什么需要使用
- 【机器学习】特征提取 特征降维
de-feedback
机器学习人工智能
特征工程特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。字典特征提取把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵为了保存数据的高效,一般使用三元组表存储。保存非零数据
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- AutoML原理与代码实例讲解
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AutoML原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着数据量的爆炸式增长和算法的日益复杂,机器学习在各个领域的应用越来越广泛。然而,机器学习模型的开发过程往往需要大量的专业知识和经验。数据预处理、特征工程、模型选择、参数调优等步骤都需要人工进行,这使得机器学习模型的开发变得复杂且耗时。为了解决这
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 【机器学习】探索数据矿藏:Python中的AI大模型与数据挖掘创新实践
C_GUIQU
机器学习人工智能python
前言:探索数据矿藏1.数据获取与预处理:AI大模型的燃料1.1数据获取:多样性与规模并重1.2数据清洗与处理:提升数据质量1.3特征工程:挖掘数据的深层次信息1.4自动化特征工程:AI与特征工程的结合2.模型训练与优化:构建智能的大脑2.1模型选择:大模型的基础构建2.2模型训练:从数据到智能的转化2.3⚙️模型优化:精益求精的智能化提升2.4模型解释与可视化:揭示黑盒的内部3实际应用案例:AI大
- 深度学习的一个完整过程通常包括以下几个步骤
longerVR
DL深度学习人工智能
深度学习的一个完整过程通常包括以下几个步骤:问题定义和数据收集:定义清晰的问题,明确任务的类型(分类、回归、聚类等)以及预期的输出。收集和整理用于训练和评估模型的数据集。确保数据集的质量,进行预处理和清理。数据预处理:处理缺失值、异常值和重复数据。进行特征工程,选择、转换或创建合适的特征。将数据集划分为训练集、验证集和测试集。选择模型架构:根据问题的性质选择适当的深度学习模型架构,如卷积神经网络(
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 零基础入门金融风控-贷款违约预测Task2 数据分析
一缕阳光lyz
数据分析数据挖掘
Task2数据分析此部分为零基础入门金融风控的Task2数据分析部分,带你来了解数据,熟悉数据,为后续的特征工程做准备,欢迎大家后续多多交流。赛题:零基础入门数据挖掘-零基础入门金融风控之贷款违约目的:1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.2.了解变量间的相互关系、变量与预测值之间的存在关系。3.为特征工
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 深度学习从入门到不想放弃-1
周博洋K
深度学习人工智能
基本功总是很香的,良好的基础才能决定上层建筑的质量和高度。从今天开始陆续连载一些深度学习的基础,包括概念,数学原理,代码,最近也确实没什么热点可以蹭先看机器学习和深度学习的对比:"数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已",机器学习和深度学习的本质区别之一是特征工程,而特征工程又是决定最终结果好坏的最重要的因素之一;上图最上面描述是机器学习的流程,如果让一个计算机理解输入的
- 《区块链公链数据分析简易速速上手小册》第8章:实战案例研究(2024 最新版)
江帅帅
区块链数据分析数据挖掘人工智能pythonweb3机器学习
文章目录8.1案例分析:投资决策支持8.1.1基础知识8.1.2重点案例:股票市场趋势预测准备工作实现步骤步骤1:加载和准备数据步骤2:特征工程步骤3:训练模型步骤4:评估模型结论8.1.3拓展案例1:基于情感分析的投资策略准备工作实现步骤
- 机器学习中的特征工程
qq_44980515
机器学习python数据分析人工智能
目录一、特征工程目标二、特征工程内容(一)异常处理(二)特征标准化/归一化(三)数据分桶(四)缺失值处理(五)特征构造(六)特征筛选(特征选择)(七)降维三、代码示例(一)导入数据(二)删除异常值(三)特征构造(四)特征筛选1.过滤式2.包裹式一、特征工程目标对于特征进行进一步分析,并对于数据进行处理。完成对于特征工程的分析,并对于数据进行一些图表或者文字总结。特征工程的主要目的还是在于将数据转换
- FFA 2023 专场解读:AI 特征工程、数据集成
flink大数据
今年FlinkForwardAsia(以下简称FFA)重新回归线下,将于12月8-9日在北京望京凯悦酒店举办。FlinkForwardAsia2023大会议程已正式上线!FlinkForward是由Apache官方授权的ApacheFlink社区官方技术大会,作为最受ApacheFlink社区开发者期盼的年度峰会之一,FFA2023将持续集结行业最佳实践以及Flink最新技术动态,是中国Flink
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(1)搭建一个机器学习模型
giszz
人工智能学习笔记人工智能学习笔记
今天学习的是,如何搭建一个机器学习模型。主要有以上的步骤:原始数据采集特征工程数据预处理特征提取特征转换(构造)预测识别(模型训练和测试)在实际工作中,特征比模型更重要。数据和特征的选择,已经决定了模型的天花板,模型算法只是去逼近这个上限。在上述的特征工程中:数据预处理,就是去除数据的噪声,例如文本中的错误、不再使用的词语等;特征提取,就是从原始数据中提取一些有效的特征。例如图像分类中,提取边缘、
- 基于决策树的金融市场波动性预测与应用
OverlordDuke
机器学习决策树决策树算法机器学习
基于决策树的金融市场波动性预测与应用项目背景与意义数据概述与分析数据来源数据特征数据预处理与特征工程模型训练与评估结果与应用总结LightGBM是一个机器学习算法库,用于梯度提升机(GradientBoostingMachine)的实现。梯度提升机是一种集成学习方法,通过串行训练多个弱学习器(通常是决策树),每次学习的模型都试图纠正前一次模型的错误,从而逐步提升整体模型的性能。LightGBM算法
- 探索XGBoost:时间序列数据建模
Echo_Wish
Python笔记Python算法python算法开发语言
导言XGBoost是一种强大的机器学习算法,广泛应用于各种领域的数据建模任务中。但是,在处理时间序列数据时,需要特别注意数据的特点和模型的选择。本教程将深入探讨如何在Python中使用XGBoost建模时间序列数据,包括数据准备、特征工程和模型训练等方面,并提供相应的代码示例。准备数据在处理时间序列数据之前,首先需要准备数据。通常,时间序列数据是按照时间顺序排列的,每个时间点都有相应的观测值。以下
- 葫芦书第一章——特征工程
单调不减
葫芦书是机器学习岗位面试的必读书,第一遍读,就当作对自己这四个月以来入门机器学习的知识测验,顺便查漏补缺。葫芦书比较好的一点是它的写作是通过问答方式进行的,就像一场模拟面试一样,而这些问题可能是我自学相关知识的时候没有细想过的,通过这些问题我也可以发现自己的知识盲区,再查阅相关资料。闲言少叙,开始啦。特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本
- task3 特征工程
1598903c9dd7
1.采用tsfresh工具包提取时间序列特征导入工具包:提取特征:融合之前单变量特征之后,预测变差......哭
- task 13 集成学习
罐罐儿111
蒸汽量预测1.特征工程一般流程:1.去掉无用特征2.去掉冗余特征3.利用存在的特征、特征转换、内容中的特征以及其他数据源生成新特征4.特征转换(数值化、类别转换、归一化)5.特征处理(异常值、最大值、最小值、缺失值)观察特征核密度估计,已知散点图,做回归,要求连线尽可能平滑,大致观察数据的分布情况。在本例中,通过核密度估计,观察训练集与测试集数据的分布情况,从而删除不具有相似分布的属性值计算相关性
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- 特征工程:数据平衡
林浩杨
数据探索与可视化机器学习python人工智能机器学习算法数据挖掘
目录一、前言二、正文Ⅰ.基于过采样算法Ⅱ.基于欠采样算法Ⅲ..基于过采样和欠采样的综合算法三、结语一、前言大多数情况下,使用的数据集是不完美的,会出现各种各样的问题,尤其针对分类问题的时候,会出现类别不平衡的问题。例如:在垃圾邮件分类时,垃圾邮件数据会有较少的样本量,从而导致两种类型的邮件数据量差别很大;在欺诈监测数据集中,往往包含的欺诈样本并没有那么多。处理这类数据集的分类的时候,需要对数据集的
- 掌握XGBoost:特征工程与数据预处理
Echo_Wish
Python算法Python笔记机器学习python人工智能
掌握XGBoost:特征工程与数据预处理导言在应用XGBoost模型之前,特征工程和数据预处理是至关重要的步骤。良好的特征工程和数据预处理可以显著提高模型的性能。本教程将介绍在Python中使用XGBoost进行特征工程和数据预处理的中级教程,通过代码示例详细说明各种技术和方法。安装XGBoost首先,请确保您已经安装了Python和pip。然后,您可以使用以下命令安装XGBoost:pipins
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- 【深度学习:掌握监督学习】掌握监督学习综合指南
jcfszxc
深度学习知识专栏深度学习学习人工智能
【深度学习:掌握监督学习】掌握监督学习综合指南监督学习的定义和简要说明监督学习在人工智能中的重要性和相关性概述什么是监督学习?基本概念主要组件:输入要素和目标标签训练监督式学习模型监督学习算法的类型分类回归每个类别中的流行算法示例监督学习的数据预处理数据清洗数据转换数据缩减特征工程概念简介及其对模型性能的影响模型评估和验证评估和验证监督学习模型的重要性常见评估指标概述模型评估技术挑战和未来方向监督
- Titanic - 1
silent_eyes_77
本周原想探究一下seaborn绘图方面的运用,发现用在实际案例中更有效果,遂直接用Kaggel经典的Titanic案例的描述性分析部分进行研究。以下是案例的其中一部分,模型探究有待补充与更新。复习一下,完成这篇分析报告需要进行的几个步骤:一、导入数据包与数据集二、数据分析1、总体预览2、描述性统计分析:使用统计学与绘图,初步了解数据之间相关性,为构造特征工程和模型建立做准备3、数据清洗4、建模与优
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>