Click here to see previous note.
You may use polynomial features to find an ideal classifier, but when we have lots of features, it may comes to overfitting in the end.
a i ( j ) = a_i^{(j)} = ai(j)= “activation” of unit i i i in layer j j j.
$\Theta^{(j)} = $ matrix of weight controlling function mapping from layer j j j to layer j + 1 j+1 j+1.
a 1 ( 2 ) = g ( Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 ) a 2 ( 2 ) = g ( Θ 20 ( 1 ) x 0 + Θ 21 ( 1 ) x 1 + Θ 22 ( 1 ) x 2 + Θ 23 ( 1 ) x 3 ) a 3 ( 2 ) = g ( Θ 30 ( 1 ) x 0 + Θ 31 ( 1 ) x 1 + Θ 32 ( 1 ) x 2 + Θ 33 ( 1 ) x 3 ) h Θ ( x ) = a 1 ( 3 ) = g ( Θ 10 ( 2 ) a 0 ( 2 ) + Θ 11 ( 2 ) a 1 ( 2 ) + Θ 12 ( 2 ) a 2 ( 2 ) + Θ 13 ( 2 ) a 3 ( 2 ) ) a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)\\ a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)\\ a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)\\ h_\Theta(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) a1(2)=g(Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3)a2(2)=g(Θ20(1)x0+Θ21(1)x1+Θ22(1)x2+Θ23(1)x3)a3(2)=g(Θ30(1)x0+Θ31(1)x1+Θ32(1)x2+Θ33(1)x3)hΘ(x)=a1(3)=g(Θ10(2)a0(2)+Θ11(2)a1(2)+Θ12(2)a2(2)+Θ13(2)a3(2))
If network has s j s_j sj units in layer j j j, s j s_j sj units in layer j + 1 j+1 j+1, then Θ ( j ) \Theta^{(j)} Θ(j) will be of dimension s j + 1 × ( s j + 1 ) s_{j+1} \times (s_j+1) sj+1×(sj+1).
Let Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 = z 1 ( 2 ) \Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3 = z^{(2)}_1 Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3=z1(2) and a 1 ( 2 ) = g ( z 1 ( 2 ) ) a_1^{(2)} = g(z^{(2)}_1) a1(2)=g(z1(2)).
Turn it to a vector!
x = [ x 0 x 1 x 2 x 3 ] z ( 2 ) = [ z 1 ( 2 ) z 2 ( 2 ) z 3 ( 2 ) ] , z ( 2 ) = Θ ( 1 ) x ( x = a ( 1 ) ) a ( 2 ) = g ( z ( 2 ) ) . \mathbf{x} = \left[ \begin{matrix} x_0\\ x_1\\ x_2\\ x_3 \end{matrix} \right]\quad \mathbf{z}^{(2)} = \left[ \begin{matrix} z_1^{(2)}\\ z_2^{(2)}\\ z_3^{(2)} \end{matrix} \right],\\ z^{(2)} = \Theta^{(1)}x\quad (x = a^{(1)})\\ a^{(2)} = g(z^{(2)}). x=⎣⎢⎢⎡x0x1x2x3⎦⎥⎥⎤z(2)=⎣⎢⎡z1(2)z2(2)z3(2)⎦⎥⎤,z(2)=Θ(1)x(x=a(1))a(2)=g(z(2)).
Add a 0 ( 2 ) = 1 a_0^{(2)} =1 a0(2)=1, z ( 3 ) = Θ ( 2 ) a ( 2 ) z^{(3)} = \Theta^{(2)}a^{(2)} z(3)=Θ(2)a(2), h Θ ( x ) = a ( 3 ) = g ( z ( 3 ) ) h_\Theta(x) = a^{(3)} = g(z^{(3)}) hΘ(x)=a(3)=g(z(3)).
Training set: ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , ( x ( m ) , y ( m ) ) (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(m)}, y^{(m)}) (x(1),y(1)),(x(2),y(2)),(x(m),y(m)),
y ( i ) ∈ [ 1 0 0 0 ] , [ 0 1 0 0 ] , [ 0 0 1 0 ] , [ 0 0 0 1 ] y^{(i)} \in \left[\begin{matrix}1\\0\\0\\0\end{matrix}\right], \left[\begin{matrix}0\\1\\0\\0\end{matrix}\right], \left[\begin{matrix}0\\0\\1\\0\end{matrix}\right],\left[\begin{matrix}0\\0\\0\\1\end{matrix}\right] y(i)∈⎣⎢⎢⎡1000⎦⎥⎥⎤,⎣⎢⎢⎡0100⎦⎥⎥⎤,⎣⎢⎢⎡0010⎦⎥⎥⎤,⎣⎢⎢⎡0001⎦⎥⎥⎤.