Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树

题意:给你一个序列,需要支持以下操作:1:区间内的所有数加上某个值。2:区间内的所有数除以某个数(向下取整)。3:询问某个区间内的最大值。

思路(从未见过的套路):维护区间最大值和区间最小值,执行2操作时,继续向下寻找子区间,如果区间满足:min - (min / x) == max - (max / x)时,给这个区间内的所有数减去min - (min / x)就可以了。为什么这样做呢?因为向下取整操作变化速度远快于加法,在经过很多次操作后其实序列中的数区域相等,复杂度需要用势能分析之类的,均摊复杂度应该是O(n * (log(n) ^ 2))。

代码:

#include 
#define LL long long
#define ls (o << 1)
#define rs (o << 1 | 1)
using namespace std;
const int maxn = 200010;
struct Seg {
	LL add, mx, mi;
};
Seg tr[maxn * 4];
LL a[maxn];

void pushup(int o) {
	tr[o].mx = max(tr[ls].mx, tr[rs].mx);
	tr[o].mi = min(tr[ls].mi, tr[rs].mi);
}

void pushdown(int o) {
	if(tr[o].add != 0) {
		tr[ls].add += tr[o].add;
		tr[ls].mi += tr[o].add;
		tr[ls].mx += tr[o].add; 
		tr[rs].add += tr[o].add;
		tr[rs].mi += tr[o].add;
		tr[rs].mx += tr[o].add;
		tr[o].add = 0;
	}
}

void dfs(int o, int l, int r, LL val) {
	if(tr[o].mi - (tr[o].mi / val) == tr[o].mx - (tr[o].mx / val)) {
		LL tmp = tr[o].mi - (tr[o].mi / val);
		tr[o].add -= tmp;
		tr[o].mi -= tmp;
		tr[o].mx -= tmp;
		return;
	}
	int mid = (l + r) >> 1;
	pushdown(o);
	dfs(ls, l, mid, val);
	dfs(rs, mid + 1, r, val);
	pushup(o);
}

void build(int o, int l, int r) {
	if(l == r) {
		tr[o].add = 0;
		tr[o].mx = tr[o].mi = a[l];
		return;
	}
	int mid = (l + r) >> 1;
	build(ls, l, mid);
	build(rs, mid + 1, r);
	pushup(o);
}

void update(int o, int l, int r, int ql, int qr, LL val, bool flag) {
	if(l >= ql && r <= qr) {
		if(flag == 0) {
			tr[o].mi += val;
			tr[o].mx += val;
			tr[o].add += val;
		} else {
			dfs(o, l, r, val);
		}
		return;
	}
	pushdown(o);
	int mid = (l + r) >> 1;
	if(ql <= mid) update(ls, l, mid, ql, qr, val, flag);
	if(qr > mid) update(rs, mid + 1, r, ql, qr, val, flag);
	pushup(o);
}

LL query(int o, int l, int r, int ql, int qr) {
	if(l >= ql && r <= qr) {
		return tr[o].mx;
	}
	int mid = (l + r) >> 1;
	LL ans = 0;
	pushdown(o);
	if(ql <= mid) ans = max(ans, query(ls, l, mid, ql, qr));
	if(qr > mid) ans = max(ans, query(rs, mid + 1, r, ql, qr));
	return ans;
}

int main() {
	int op, l, r, x, n, m;
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) {
		scanf("%lld", &a[i]);
	}
	build(1, 1, n);
	for (int i = 1; i <= m; i++) {
		scanf("%d", &op);
		if(op == 0) {
			scanf("%d%d%d", &l, &r, &x);
			l++, r++;
			update(1, 1, n, l, r, x, 0);
		} else if(op == 1) {
			scanf("%d%d%d", &l, &r, &x);
			l++, r++;
			if(x != 1)
				update(1, 1, n, l, r, x, 1);
		} else {
			scanf("%d%d%d", &l, &r, &x);
			l++, r++;
			printf("%lld\n", query(1, 1, n, l, r));
		}
	}
} 

  

你可能感兴趣的:(Petrozavodsk Winter-2018. AtCoder Contest. Problem I. ADD, DIV, MAX 吉司机线段树)