Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成

Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成

  • 一. 理解和实践SIFT特征提取与匹配
  • 二. 全景图片的生成
  • 三、循环依次读取一个序列图片,进行匹配连线

一. 理解和实践SIFT特征提取与匹配

首先先准备好两张不同角度的照片,方便我们进行特征提取
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第1张图片
接下来在Ubuntu下新建一个test01.cpp文件,并输入特征提取匹配代码:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
 
using namespace cv;
 
int main(int argc,char *argv[])
{
	Mat image01=imread(argv[1]);
	Mat image02=imread(argv[2]);
	Mat image1,image2;
	GaussianBlur(image01,image1,Size(3,3),0.5);
	GaussianBlur(image02,image2,Size(3,3),0.5);
 
	//提取特征点
	SiftFeatureDetector siftDetector(30);  //限定提起前15个特征点
	vector keyPoint1,keyPoint2;
	siftDetector.detect(image1,keyPoint1);
	siftDetector.detect(image2,keyPoint2);
 
	//绘制特征点
	drawKeypoints(image1,keyPoint1,image1,Scalar::all(-1),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
	drawKeypoints(image2,keyPoint2,image2,Scalar::all(-1),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
	namedWindow("KeyPoints of image1",0);
	namedWindow("KeyPoints of image2",0);
 
	imshow("KeyPoints of image1",image1);
	imshow("KeyPoints of image2",image2);
 
	//特征点描述,为下边的特征点匹配做准备
	SiftDescriptorExtractor siftDescriptor;
	Mat imageDesc1,imageDesc2;
	siftDescriptor.compute(image1,keyPoint1,imageDesc1);
	siftDescriptor.compute(image2,keyPoint2,imageDesc2);
 
	//特征点匹配并显示匹配结果
	BruteForceMatcher> matcher;
	vector matchePoints;
	matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
	Mat imageOutput;
	drawMatches(image01,keyPoint1,image02,keyPoint2,matchePoints,imageOutput);
	namedWindow("Mathch Points",0);
	imshow("Mathch Points",imageOutput);
	waitKey();
	return 0;
}

编译文件

g++ test01.cpp -o test01 `pkg-config --cflags --libs opencv` -std=c++11

另外注意,Linux上编译opencv代码时报错

fatal error: opencv2\highgui\highgui.hpp: No such file or directory

在这里插入图片描述

将代码的头文件改为:

#include 

这样就能顺利运行了。
在这里插入图片描述
编译完成后,出现可执行文件test01,点击运行
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第2张图片接下来我们就可以看见图像的特征点提取与匹配。
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第3张图片(特征点的提取,颜色不是很明显,认真看还是能看到提取圈的。)

二. 全景图片的生成

首先还是准备好要拼接的图片。
图片1
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第4张图片
图片2
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第5张图片
图片3
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第6张图片
注意,拼接的图片一定要有重合的部分。否则就会一直报错
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第7张图片
接下来在Ubuntu下新建一个test02.cpp文件,并输入图像拼接代码:

#include 
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
#include 
 
using namespace cv;
using namespace std;
 
vector<Mat> imgs; //保存拼接的原始图像向量
 
//导入所有原始拼接图像函数
void parseCmdArgs(int argc, char** argv);
 
int main(int argc, char* argv[])
{
	//导入拼接图像
	parseCmdArgs(argc, argv);	
	Mat pano;
	Stitcher stitcher = Stitcher::createDefault(false);
	Stitcher::Status status = stitcher.stitch(imgs, pano);//拼接
	if (status != Stitcher::OK) //判断拼接是否成功
	{
		cout << "Can't stitch images, error code = " << int(status) << endl;
		return -1;
	}
	namedWindow("全景拼接",0);
	imshow("全景拼接",pano);
	imwrite("D:\\全景拼接.jpg",pano);
	waitKey();   
	return 0;
}
 
//导入所有原始拼接图像函数
void parseCmdArgs(int argc, char** argv)
{
	for(int i=1;i<argc;i++)
	{
		Mat img = imread(argv[i]);
		if (img.empty())
		{
			cout << "Can't read image '" << argv[i] << "'\n";
		}
		imgs.push_back(img);
	}
}

编译

g++ test02.cpp -o test02 `pkg-config --cflags --libs opencv` -std=c++11

在这里插入图片描述
接下来,在终端输入参数图片,执行代码.

./test02 ./img03.jpg ./img04.jpg ./img05.jpg 

在这里插入图片描述
执行成功后,就会生成拼接的照片。
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第8张图片

三、循环依次读取一个序列图片,进行匹配连线

这里我采用了无人驾驶车数据集Kitti 的一部分图集作为读取对象
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第9张图片在输入代码,实现循环依次读取一个序列图片,进行匹配连线

#include 
#include 
#include 
#include 
#include
#include 
using namespace cv;
using namespace std;
// global variables

const double pi = 3.1415926;    // pi

void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints);

typedef vector<bool> DescType;  // type of descriptor, 256 bools
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc);

void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2,vector<cv::DMatch> &matches);

int main(int argc, char **argv) {
   std::string pattern_jpg ="/home/lk/kitti_Image/kitti_Image/Kitti_image_2/*.png";
   std::vector<cv::String> image_files;
   cv::glob(pattern_jpg, image_files);
   for (unsigned int frame = 0; frame < image_files.size(); ++frame) {
   	//imshow("1", image);
   	//imshow("2", image1);
   	//waitKey(30);
         // load image
       cv::Mat first_image = cv::imread(image_files[frame], 0);    // load grayscale image
       cv::Mat second_image = cv::imread(image_files[frame+1], 0);  // load grayscale image
   //cv::Mat third_image = cv::imread(image_files[frame+2], 0);  // load grayscale image

   // plot the image
       //cv::imshow("first image", first_image);
       //cv::imshow("second image", second_image);
   //cv::imshow("third image", third_image);
       //cv::waitKey(0);
   // detect FAST keypoints using threshold=40
       vector<cv::KeyPoint> keypoints;
       cv::FAST(first_image, keypoints, 40);
       cout << "keypoints: " << keypoints.size() << endl;

   // compute angle for each keypoint
       computeAngle(first_image, keypoints);

   // compute ORB descriptors
        vector<DescType> descriptors;
       computeORBDesc(first_image, keypoints, descriptors);

   // plot the keypoints
       cv::Mat image_show;
       cv::drawKeypoints(first_image, keypoints, image_show, cv::Scalar::all(-1),
                     cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
       string a="feature";
       string b=".png";
       stringstream ss;
       ss<<a<<frame<<b;
      // cv::imshow(ss.str(), image_show);
     
       cv::imwrite(ss.str(), image_show);
       cv::waitKey(0);

   // we can also match descriptors between images
   // same for the second
       vector<cv::KeyPoint> keypoints2;
       cv::FAST(second_image, keypoints2, 40);
       cout << "keypoints: " << keypoints2.size() << endl;

   // compute angle for each keypoint
       computeAngle(second_image, keypoints2);

   // compute ORB descriptors
       vector<DescType> descriptors2;
       computeORBDesc(second_image, keypoints2, descriptors2);
   // same for the third
      // vector<cv::KeyPoint> keypoints3;
       //cv::FAST(third_image, keypoints3, 40);
       //cout << "keypoints: " << keypoints3.size() << endl;

   // compute angle for each keypoint
       //computeAngle(third_image, keypoints3);

   // compute ORB descriptors
       //vector<DescType> descriptors3;
      // computeORBDesc(third_image, keypoints3, descriptors3);

   // find matches
       vector<cv::DMatch> matches;
       bfMatch(descriptors,descriptors2, matches);
       if (matches.size()<4)
       {
           cout<<"匹配点过少!"<<endl;
       }
       cout << "matches: " << matches.size() << endl;

   // plot the matches
       cv::drawMatches(first_image, keypoints, second_image, keypoints2, matches,image_show);
   //cv::drawMatches(second_image, keypoints2, third_image, keypoints3,matches,image_show);
       string c="matches";
       string d=".png";
       stringstream sb;
       sb<<c<<frame<<d;
       cv::imshow(sb.str(), image_show);
       cv::imwrite(sb.str(), image_show);
       cv::waitKey(0);

       cout << "done." << endl;
       cout<<endl;
   }

   return 0;
}

// -------------------------------------------------------------------------------------------------- //

// compute the angle
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints) {
   int half_patch_size = 8;
   for (auto &kp : keypoints) {
   // START YOUR CODE HERE (~7 lines)
//        kp.angle = 0; // compute kp.angle
       double m10 = 0;
       double m01 = 0;
       int x =cvRound(kp.pt.x);
       int y =cvRound(kp.pt.y);
       if(x-half_patch_size<0||x+half_patch_size>image.cols||
          y-half_patch_size<0||y+half_patch_size>image.rows)
           continue;
       for(int u = x - half_patch_size;u<x + half_patch_size;++u)
       {
           for(int v = y -half_patch_size;v< y + half_patch_size;++v)
           {
               m10 +=  (u-x)*image.at<uchar>(v,u);
               m01 +=  (v-y)*image.at<uchar>(v,u);
           }
       }

       double theta = std::atan(m01/m10);
       kp.angle = theta * 180/pi;
       cout<<"kp.angel:"<<kp.angle<<endl;
//         END YOUR CODE HERE
   }
   return;
}

// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
       8, -3, 9, 5/*mean (0), correlation (0)*/,
       4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
       -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
       7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
       2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
       1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
       -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
       -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
       -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
       10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
       -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
       -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
       7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
       -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
       -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
       -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
       12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
       -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
       -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
       11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
       4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
       5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
       3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
       -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
       -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
       -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
       -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
       -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
       -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
       5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
       5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
       1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
       9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
       4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
       2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
       -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
       -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
       4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
       0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
       -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
       -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
       -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
       8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
       0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
       7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
       -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
       10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
       -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
       10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
       -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
       -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
       3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
       5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
       -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
       3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
       2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
       -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
       -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
       -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
       -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
       6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
       -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
       -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
       -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
       3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
       -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
       -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
       2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
       -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
       -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
       5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
       -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
       -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
       -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
       10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
       7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
       -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
       -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
       7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
       -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
       -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
       -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
       7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
       -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
       1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
       2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
       -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
       -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
       7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
       1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
       9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
       -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
       -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
       7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
       12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
       6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
       5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
       2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
       3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
       2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
       9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
       -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
       -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
       1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
       6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
       2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
       6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
       3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
       7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
       -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
       -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
       -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
       -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
       8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
       4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
       -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
       4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
       -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
       -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
       7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
       -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
       -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
       8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
       -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
       1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
       7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
       -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
       11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
       -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
       3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
       5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
       0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
       -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
       0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
       -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
       5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
       3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
       -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
       -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
       -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
       6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
       -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
       -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
       1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
       4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
       -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
       2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
       -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
       4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
       -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
       -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
       7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
       4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
       -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
       7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
       7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
       -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
       -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
       -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
       2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
       10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
       -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
       8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
       2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
       -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
       -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
       -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
       5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
       -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
       -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
       -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
       -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
       -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
       2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
       -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
       -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
       -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
       -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
       6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
       -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
       11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
       7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
       -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
       -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
       -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
       -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
       -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
       -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
       -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
       -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
       1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
       1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
       9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
       5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
       -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
       -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
       -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
       -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
       8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
       2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
       7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
       -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
       -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
       4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
       3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
       -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
       5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
       4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
       -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
       0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
       -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
       3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
       -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
       8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
       -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
       2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
       10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
       6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
       -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
       -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
       -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
       -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
       -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
       4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
       2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
       6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
       3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
       11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
       -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
       4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
       2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
       -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
       -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
       -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
       6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
       0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
       -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
       -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
       -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
       5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
       2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
       -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
       9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
       11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
       3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
       -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
       3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
       -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
       5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
       8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
       7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
       -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
       7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
       9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
       7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
       -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

// compute the descriptor
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc) {
   for (auto &kp: keypoints) {
       DescType d(256, false);
       double un_up,un_vp,un_uq,un_vq; // 一对点;
       double up,vp,uq,vq; // 旋转后的点;
       for (int i = 0; i < 256; i++) {
           // START YOUR CODE HERE (~7 lines)
           d[i] = 0;  // if kp goes outside, set d.clear()

           un_up = ORB_pattern[i*4];
           un_vp = ORB_pattern[i*4+1];
           un_uq = ORB_pattern[i*4+2];
           un_vq = ORB_pattern[i*4+3];           // 比较两组点的灰度值大小;

           // 旋转到主方向上;
           double angle = kp.angle * (pi/180);

           up =kp.pt.x+  cos(angle)*un_up-sin(angle)*un_vp;
           vp =kp.pt.y+ sin(angle)*un_up + cos(angle)*un_vp;
           uq =kp.pt.x+  cos(angle)*un_uq-sin(angle)*un_vq;
           vq =kp.pt.y+ sin(angle)*un_uq + cos(angle)*un_vq;

           //边界约束;
           if(up>image.cols||up<0 || vp <0||vp>image.rows||uq>image.cols||uq<0 || vq <0||vq>image.rows)
           {
               d.clear();//超出边界,特征点描述子清零;
               break;
           }
           else if(image.at<uchar>(vp,up)<image.at<uchar>(vq,uq))
           {
               d[i]=1;
           }

       // END YOUR CODE HERE
       }
       desc.push_back(d);
   }

   int bad = 0;
   for (auto &d: desc) {
       if (d.empty()) bad++;
   }
   cout << "bad/total: " << bad << "/" << desc.size() << endl;
   return;
}
// brute-force matching
void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
   int d_max = 50;
   int d = 0;
   int queryIdx,trainIdx;
   int dis;
   // START YOUR CODE HERE (~12 lines)
   // find matches between desc1 and desc2.
   for(int i =0;i<desc1.size();++i)
   {
       if(desc1[i].empty())
           continue;
       d=0;
       dis = 0;
       for(int j =0;j<desc2.size();++j)
       {
        if(desc2[j].empty())
            continue;
            d=0;
           for(int k = 0;k<256;++k)
           {
               if(desc1[i][k] != desc2[j][k])
                   d += 1;
           }
//            cout<<"d: "<
           if (d<d_max&&(dis==0||d<dis))
           {
               dis = d;
               queryIdx = i;
               trainIdx = j;
           }
       }
       if(dis != 0) //匹配到了;
       {
           matches.push_back(cv::DMatch(queryIdx,trainIdx,dis));
       }

   }
   // END YOUR CODE HERE
   for (auto &m: matches) {
       cout << m.queryIdx << ", " << m.trainIdx << ", " << m.distance << endl;
   }
   return;
}

在终端输入命令

g++ computeORB1.cpp -o computeORB1 `pkg-config --cflags --libs opencv` -std=c++11

就会生成computeORB1可执行文件
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第10张图片运行这个文件

./computeORB1

执行成功后,就会生成图片
Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成_第11张图片
最后结果展示

你可能感兴趣的:(Ubuntu16.04下基于opencv--实现图像SIFT特征与全景图片的生成)