机器学习-梯度下降算法

梯度下降(最速下降法)

  • 梯度下降法(Gradient Descent,GD)常用于求解无约束情况下凸函数(Convex Function)的极小值,是一种迭代类型的算法,因为凸函数只有一个极值点,故求解出来的极小值点就是函数的最小值点。
  • 梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以梯度下降法也被称为“最速下降法”。梯度下降法中越接近目标值,变量变化越小。
    计算公式如下:
    在这里插入图片描述
  • α被称为步长或者学习率(learning rate),表示自变量θ每次迭代变化的大小。
  • 收敛条件:当目标函数的函数值变化非常小的时候或者达到最大迭代次数的时候,就结束循环。

如图所示:
机器学习-梯度下降算法_第1张图片
机器学习-梯度下降算法_第2张图片
深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。

  • 遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为批量梯度下降(Batch gradient descent)
  • 每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降(stochastic gradient descent)。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。
  • 为了克服两种方法的缺点,现在一般采用的是一种折中手段,小批量梯度下降(mini-batch gradient decent),这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

基本上现在的梯度下降都是基于mini-batch的,所以Keras的模块中经常会出现batch_size,就是指这个。

梯度

  • 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂y0)T.或者▽f(x0,y0),如果是3个参数的向量梯度,就是(∂f/∂x, ∂f/∂y,∂f/∂z)T,以此类推。

  • 那么这个梯度向量求出来有什么意义呢?他的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。

在机器学习算法中,在最小化损失函数时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数,和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。

梯度下降法算法详解

梯度下降的直观解释

首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山峰低处。

从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。
机器学习-梯度下降算法_第3张图片

梯度下降的相关概念

  • 步长(Learning rate)也叫学习率α:步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用上面下山的例子,步长就是在当前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度。

  • 特征(feature):指的是样本中输入部分,比如2个单特征的样本(x(0),y(0)),(x(1),y(1))(x(0),y(0)),(x(1),y(1)),则第一个样本特征为x(0)x(0),第一个样本输出为y(0)y(0)。

  • 假设函数(hypothesis function):在监督学习中,为了拟合输入样本,而使用的假设函数,记为hθ(x)。比如对于单个特征的m个样本(x(i),y(i))(i=1,2,…m)(x(i),y(i))(i=1,2,…m),可以采用拟合函数如下: hθ(x)=θ0+θ1x。

  • 损失函数(loss function):为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数。在线性回归中,损失函数通常为样本输出和假设函数的差取平方。比如对于m个样本(xi,yi)(i=1,2,…m)(xi,yi)(i=1,2,…m),采用线性回归,损失函数为:
    在这里插入图片描述
    其中xi表示第i个样本特征,yi表示第i个样本对应的输出,hθ(xi)为假设函数。

梯度下降的详细算法

梯度下降法的算法可以有代数法矩阵法(也称向量法)两种表示,过程理解基本一样,合并在一起写。

  • 先决条件: 确认优化模型的假设函数和损失函数。

  • 算法相关参数初始化:主要是初始化θ0,θ1…,θn算法终止距离ε以及步长α。在没有任何先验知识的时候,我喜欢将所有的θθ初始化为0, 将步长初始化为1。在调优的时候再优化。

  • 算法过程:

  • 1)确定当前位置的损失函数的梯度,对于θi,其梯度表达式如下:∂θiJ(θ0,θ1…,θn)

  • 2)用步长乘以损失函数的梯度,得到当前位置下降的距离即α*∂θiJ(θ0,θ1…,θn)

  • 3)确定是否所有的θi,梯度下降的距离都小于ε,如果小于ε则算法终止,当前所有的θi(i=0,1,…n)即为最终结果。否则进入步骤4.

  • 4)更新所有的θ,对于θi,其更新表达式如下。更新完毕后继续转入步骤1.
    θi=θi−α∂ * θiJ(θ0,θ1…,θn)

梯度下降的算法调优

  • 算法的步长选择。在前面的算法描述中,我提到取步长为1,但是实际上取值取决于数据样本,可以多取一些值,从大到小,分别运行算法,看看迭代效果,如果损失函数在变小,说明取值有效,否则要增大步长。前面说了。步长太大,会导致迭代过快,甚至有可能错过最优解。步长太小,迭代速度太慢,很长时间算法都不能结束。所以算法的步长需要多次运行后才能得到一个较为优的值。

  • 算法参数的初始值选择。 初始值不同,获得的最小值也有可能不同,因此梯度下降求得的只是局部最小值;当然如果损失函数是凸函数则一定是最优解。由于有局部最优解的风险,需要多次用不同初始值运行算法,关键损失函数的最小值,选择损失函数最小化的初值。

  • 归一化。由于样本不同特征的取值范围不一样,可能导致迭代很慢,为了减少特征取值的影响,可以对特征数据归一化和标准化,这样可以提高算法的收敛速度,也能提高准确率。

梯度下降法分类(BGD,SGD,MBGD)

  • 批量梯度下降法(Batch Gradient Descent),是梯度下降法最常用的形式,具体做法也就是在更新参数时使用所有的样本来进行更新,由于我们有m个样本,这里求梯度的时候就用了所有m个样本的梯度数据。
  • 随机梯度下降法(Stochastic Gradient Descent),其实和批量梯度下降法原理类似,区别在与求梯度时没有用所有的m个样本的数据,而是仅仅选取一个样本j来求梯度。

随机梯度下降法批量梯度下降法是两个极端,一个采用所有数据来梯度下降,一个用一个样本来梯度下降。自然各自的优缺点都非常突出。对于训练速度来说,随机梯度下降法由于每次仅仅采用一个样本来迭代,训练速度很快,而批量梯度下降法在样本量很大的时候,训练速度不能让人满意。对于准确度来说,随机梯度下降法用于仅仅用一个样本决定梯度方向,导致解很有可能不是最优。对于收敛速度来说,由于随机梯度下降法一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。

  • 小批量梯度下降法(Mini-batch Gradient Descent)是BGD和SGD的折衷,也就是对于m个样本,我们采用N个样本来迭代,1

梯度下降法和其他无约束优化算法的比较

在机器学习中的无约束优化算法,除了梯度下降以外,还有前面提到的最小二乘法,此外还有牛顿法和拟牛顿法。

  • 梯度下降法和最小二乘法相比,梯度下降法需要选择步长,而最小二乘法不需要。梯度下降法是迭代求解,最小二乘法是计算解析解。如果样本量不算很大,且存在解析解,最小二乘法比起梯度下降法要有优势,计算速度很快。但是如果样本量很大,用最小二乘法由于需要求一个超级大的逆矩阵,这时就很难或者很慢才能求解解析解了,使用迭代的梯度下降法比较有优势。

  • 梯度下降法和牛顿法/拟牛顿法相比,两者都是迭代求解,不过梯度下降法是梯度求解,而牛顿法/拟牛顿法是用二阶的海森矩阵的逆矩阵或伪逆矩阵求解。相对而言,使用牛顿法/拟牛顿法收敛更快。但是每次迭代的时间比梯度下降法长。

你可能感兴趣的:(机器学习,梯度下降)