from planar_utils import *
import matplotlib.pyplot as plt
import numpy as np
import copy
def layer_build():
layer = [2, 4,1]
return layer
def data_preprocess(X):
X = (X-np.mean(X)/np.std(X))
return X
def init_parameter():
np.random.seed(1)
layers = layer_build()
W = [0] # 第零层的权重,在这里占位,运算的时候不用
B = [0] # 第零层的权重,在这里占位,运算的时候不用
for i in range(1, len(layers)):
w = np.random.randn(layers[i], layers[i-1])*0.01
W.append(w)
b = np.zeros(shape=(layers[i], 1))
B.append(b)
parameter = {'W':W, 'B':B}
return parameter, layers
def sigmoid(z):
return 1/(1+np.exp(-z))
def forward_propagation(layers, A, Z, W, B):
for layer in range(1, len(layers)):
if layer < len(layers) - 1:
Z[layer] = np.dot(W[layer], A[layer - 1]) + B[layer]
A[layer] = np.tanh(Z[layer])
else:
Z[layer] = np.dot(W[layer], A[layer - 1]) + B[layer]
A[layer] = sigmoid(Z[layer])
return A, Z
def back_propagation(m, layers, A, W, dW, db, dZ, Y):
for layer in range(len(layers) - 1, 0, -1):
if layer == len(layers) - 1:
dZ[layer] = A[-1] - Y
dW[layer] = np.dot(dZ[layer], A[layer - 1].T) / m
db[layer] = (1 / m) * np.sum(dZ[layer], axis=1, keepdims=True)
else:
dZ[layer] = np.multiply(np.dot(W[layer + 1].T, dZ[layer + 1]), 1 - A[layer] ** 2)
dW[layer] = np.dot(dZ[layer], A[layer - 1].T) / m
db[layer] = (1 / m) * np.sum(dZ[layer], axis=1, keepdims=True)
return dW, db
def relu(z):
return np.maximum(0, z)
def training():
X, Y = load_planar_dataset()
X = data_preprocess(X)
x_shape = X.shape
y_shape = Y.shape
m = x_shape[1] # 样本数
parameter, layers = init_parameter()
W = parameter['W']
B = parameter['B']
learning_rate = 0.01
A = [1] * len(layers) # 初始化A
Z = copy.deepcopy(A)
dZ = copy.deepcopy(A)
dW = copy.deepcopy(A)
db = copy.deepcopy(A)
A[0] = X
iter_times = 50000
loss = []
for i in range(iter_times):
# 正向传播
A, Z = forward_propagation(layers, A, Z, W, B)
J = -1/m*np.sum((Y*np.log(A[-1]) + (1-Y)*np.log(1-A[-1])))
if i%1000==0:
loss.append(J)
print('第{0}次迭代的损失为:{1}'.format(i, J))
# 反向传播
dW, db = back_propagation(m, layers, A, W, dW, db, dZ, Y)
# 更新参数
for i in range(1, len(layers)):
W[i] -= learning_rate*dW[i]
B[i] -= learning_rate*db[i]
# predict
A, Z = forward_propagation(layers, A, Z, W, B)
predict = A[-1]>0.5
correct = np.sum(predict==Y)
print(correct, correct/m)
plt.plot(loss)
plt.show()
# for layer in range(1, len(layers)):
# print('W{0}:{1}'.format(layer,W[layer]))
# print('B{0}:{1}'.format(layer,B[layer]))
if __name__ == '__main__':
training()
命名为planar_utils.py
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure