- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 基于python的手写数字识别knn_用sklearn中的KNN实现Kaggle手写数字识别
普和司
importcsvfromsklearnimportneighbors#导入训练数据和测试数据defloadData(filename1,filename2,trainDataSet,trainTargetSet,testDataSet):withopen(filename1,'r')ascsvfile1:lines1=csv.reader(csvfile1)dataSet=list(lines1
- kaggle竞赛(初识)
薛定谔的码*
人工智能
PART0:Kaggle介绍Kaggle是什么?答案很简单Kaggle是数据挖掘比赛火起来的,以至于中国兴起了很多很多类似的比赛;Kaggle是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决。Kaggle提供了一个介于“完美”与真实之间的过渡,问题的定义基本良好,却夹着或多或少的难点,一般没有完全成熟的解决方案。在参赛过程中与论坛上的其他参赛者互动,能
- python3中的os.path模块
hgz_dm
编程语言python3os.path
os.path模块主要用于获取文件的属性,这里对该模块中一些常用的函数做些记录。os.abspath(path):获取文件的绝对路径。这里path指的是路径,例如我这里输入“data.csv”[In]os.path.abspath('data.csv')[Out]'E:\\kaggle\\Titanic\\data.csv'os.path.basename(path):获取文件名称。该函数默认通过
- 基于机器学习的恶意软件检测系统的详细设计与实现
源码空间站11
机器学习人工智能课程设计python网络安全信息安全恶意软件检测
以下是一个基于机器学习的恶意软件检测系统的详细设计与实现,适合作为课程作业或项目开发。我们将实现一个通过机器学习模型分析恶意软件特征来检测文件是否为恶意软件的系统。总体思路数据准备:选择现有的恶意软件数据集(如Kaggle的恶意软件数据集)或构造模拟数据集。数据集中包含文件的特征(如二进制特征、字符串特征、API调用特征等)和标签("恶意"或"正常")。特征提取:提取文件的静态特征(如文件大小、字
- chatglm3如何进行微调
learner_ctr
人工智能chatglm3llm
一、需要的环境内存:因为在loadmodel时,是先放在内存里面,所以内存不能小,最好在30GB左右显存:如果用half()精度来loadmodel的话(int4是不支持微调的),显存在16GB就可以,比如可以用kaggle的t4gpu,这款性能相当于2070系列,但是显存翻倍python:3.10即可需要安装的包和版本:!pipinstallmodelscope-ihttps://pypi.tu
- 编程小白冲Kaggle每日打卡(6)--kaggle学堂:<Python>功能和获取帮助
AZmax01
编程小白冲Kaggle每日打卡python开发语言
Kaggle官方课程链接:FunctionsandGettingHelp本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。目录FunctionsandGettingHelpGettingHelpDefiningfunctionsDocstringsFunctionsthatdon'treturnDefaultargumentsFunctionsAppliedtoFunctionsYourT
- 1.7 Kaggle大白话:Eedi竞赛Transformer框架解决方案07-调用AI模型输出结果
AI量金术师
Kaggle竞赛人工智能transformer深度学习python算法
目录0.本栏目竞赛汇总表1.本文主旨2.调用AI模型输出结果架构3.模型准备3.1代码实现3.2大白话模型准备4.数据处理4.1代码实现4.2大白话数据处理5.特征提取5.1代码实现5.2大白话特征提取6.相似度匹配6.1代码实现6.2大白话相似度匹配7.系列总结7.1章节回顾7.2竞赛排名7.3其他优秀项目(皆为竞赛金牌)0.本栏目竞赛汇总表Kaggle竞赛汇总1.本文主旨大白话:上一篇文章中,
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- 0. Kaggle实战:Kaggle竞赛实战记录列表(持续更新)
AI量金术师
Kaggle竞赛人工智能python开发语言机器学习金融
目录1.专栏描述2.Kaggle竞赛列表2.1Eedi-MiningMisconceptionsinMathematics(持续更新中)1.专栏描述本专栏专注于记录与分享Kaggle竞赛的解题思路、项目框架及代码实现。通过通俗易懂的讲解和简单明了的测试数据,帮助每位读者轻松掌握参赛技巧,快速提升实战能力,一起探索数据科学的魅力!2.Kaggle竞赛列表2.1Eedi-MiningMisconcep
- 编程小白冲Kaggle每日打卡(7)--kaggle学堂:<Python>布尔型和条件形
AZmax01
编程小白冲Kaggle每日打卡python开发语言
Kaggle课程官网链接:BooleansandConditionals本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。目录BooleansandConditionalsBooleansComparisonOperationsCombiningBooleanValuesConditionalsBooleanconversionYourTurnBooleansandConditionals
- 编程小白冲Kaggle每日打卡(4)--kaggle学堂:<编程简介>列表
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能python
Kaggle课程官网链接:IntrotoLists本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。IntrotoLists整理您的数据,以便您能够高效地使用它。Introduction在进行数据科学研究时,您需要一种组织数据的方法,以便高效地使用它。Python有许多数据结构可用于保存数据,如列表、集合、字典和元组。在本教程中,您将学习如何使用Python列表。Motivation在“花
- 编程小白冲Kaggle每日打卡(5)--kaggle学堂:<Python>Hello,Python!
AZmax01
编程小白冲Kaggle每日打卡python机器学习深度学习
Kaggle课程官方链接:Hello,Python本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。Hello,PythonPython语法、变量赋值和数字的快速介绍本课程涵盖了您需要的关键Python技能,以便您可以开始将Python用于数据科学。这门课程非常适合那些有一些编程经验的人,他们想把Python添加到他们的技能库中。(如果你是第一次编程,我们鼓励你查看我们的编程入门课程,该课
- 自编大模型系列之 01 使用 Python 从头构建 LLaMA 3 编写您自己的十亿参数LLM(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程pythonllama开发语言
LLaMA3是继Mistral之后最有前途的开源模型之一,可以解决各种任务。我之前在Medium上写过一篇博客,介绍如何使用LLaMA架构从头开始创建一个具有超过230万个参数的LLM。现在LLaMA-3已经发布,我们将以更简单的方式重新创建它。我们不会在本博客中使用GPU,但您至少需要17GB的RAM,因为我们将加载一些大小超过15GB的文件。如果这对您来说是个问题,您可以使用Kaggle作为解
- 编程小白冲Kaggle每日打卡(14)--kaggle学堂:<机器学习简介>你的第一个机器学习模型
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能
Kaggle官方课程链接:YourFirstMachineLearningModel本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。YourFirstMachineLearningModel建立你的第一个模型。好哇!选择建模数据你的数据集有太多的变量,你无法理解,甚至无法很好地打印出来。你如何将如此庞大的数据量缩减到你能理解的程度?我们将从使用直觉选择几个变量开始。后续课程将向您展示自动
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 人工智能与机器学习入门:决策树应用
决策树机器学习入门
在人工智能与机器学习入门:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行机器学习入门的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。什么是决策树决策树,简单来讲可以认为是一个大的ifelse判断树,有了决策树后,测试集中的数据便可以使用该决策树进行判断了。比如根据Titanic的训练数据构造了上次决策树后,便可以根据测试数据的性别
- 编程小白冲Kaggle每日打卡(8)--kaggle学堂:<Python>列表
AZmax01
编程小白冲Kaggle每日打卡pythonwindows开发语言
Kaggle课程官方链接:Lists本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。Lists¶列表以及你可以用它们做的事情。包括索引、切片和变异Python中的列表表示值的有序序列。以下是一个如何创建它们的示例:primes=[2,3,5,7]我们可以把其他类型的东西放在列表中:planets=['Mercury','Venus','Earth','Mars','Jupiter','S
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 更符合DeepSeek的提问方式,学术论文方面的能力我总结了这几十个提示词!
AIWritePaper官方账号
AIWritePaperDeepSeek学术论文人工智能chatgpt数据分析prompt论文阅读
DeepSeek提问技巧总结1.聚焦核心,细化问题:提问时应精准明确,避免过于宽泛或模糊。例如不要问“如何学习机器学习?”而应问“零基础如何机器学习”。对于复杂问题,可将其拆解为多个小问题,逐一提问。比如先问“学习机器学习先学习python更好吗?”再问“如何用Kaggle进行机器学习相关的数据竞赛?”2.提供背景,结构化描述:在提问时,提供问题的背景信息或目标,以便DeepSeek更准确地理解需
- DeepSeek API 输出解析【非流式输出篇】 - OpenAI SDK
Hoper.J
AIGCDeepSeekDeepSeekAPIAI
代码文件下载:Code在线链接:Kaggle|Colab前置文章:DeepSeekAPI的获取与对话示例文章目录如何切换平台认识输出DeepSeek-ChatDeepSeek-Reasoner附录如何切换平台本文不引入环境变量,如果对其感兴趣可以阅读《初识LLMAPI:环境配置与多轮对话演示》的「环境变量配置」部分。代码文件已包含文章中所有平台的正确配置。以DeepSeek单轮对话的代码样例进行讲
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- 视频分析:基于目标检测(YOLO)实现走路看手机检测、玩手机检测、跌倒检测等
shiter
人工智能系统解决方案与技术架构音视频深度学习人工智能
文章大纲背景行为检测的定义与挑战视频分析数据集目标检测数据集自制数据集思路Kaggle数据集COCO数据集OpenImagesDatasetV7人类行为视频分析yolo进行行为分析的检测看手机行为检测--方法与数据集方法数据集跌倒行为检测--方法与数据集跌倒检测-数据集跌倒检测-目标检测跌倒检测-姿态估计参考文献与学习路径背景行为检测在自动驾驶、视频监控等领域的广阔应用前景使其成为了视频分析的研究
- kaggle花分类比赛91.168%
仙尊方媛
分类数据挖掘机器学习kerastensorflow
之前一直都没注意显存,也没注意数据格式,直到跑模型的时候电脑直接崩了,因为排队用TPU,感觉人多,就直接在自己电脑上跑,我自己是有一张8G的4070,没想到啊,光是读取数据,就占用了6G历次成绩这个是用分布式gpu跑的,kaggle给配了两张16G显存的卡,TPU我前面56个人,人太多了,分辨率本身有影响,我使用192×192这里使用512×512的分辨率,效果明显提高了,Tan和Le,2019年
- DeepSeek API 的获取与对话示例
Hoper.J
AIGCDeepSeekAPIAI
代码文件下载:Code在线链接:Kaggle|Colab文章目录注册并获取API环境依赖设置API单轮对话多轮对话流式输出更换模型注册并获取API访问https://platform.deepseek.com/sign_in进行注册并登录:新用户注册后将赠送10块钱余额,有效期为一个月:点击左侧的APIkeys(或者访问https://platform.deepseek.com/api_keys)
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 【AI日记】25.01.25
AI完全体
AI日记人工智能kaggle比赛机器学习读书
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】AIkaggle比赛:ForecastingStickerSales读书书名:法治的细节律己AI:8小时,良作息:00:30-8:30,良短视频:大于1小时,差读书和写作:1小时,优饮食:安全健康
- Kaggle房价预测
一名小菜鸟的学习之路
深度学习pytorch深度学习机器学习python人工智能神经网络
Kaggle房价预测作为深度学习基础篇章的总结,我们将对本章内容学以致用。下面,让我们动手实战一个Kaggle比赛:房价预测。本节将提供未经调优的数据的预处理、模型的设计和超参数的选择。我们希望读者通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到令自己满意的结果。%matplotlibinlineimporttorchimporttorch.nnasnnimportnumpya
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- kaggle上面有哪些适合机器学习新手的比赛和项目
xiamu_CDA
机器学习人工智能
Kaggle上面有哪些适合机器学习新手的比赛和项目?在当今数据驱动的时代,机器学习已经成为一门炙手可热的技能。Kaggle作为全球最大的数据科学竞赛平台,不仅汇聚了众多顶尖的数据科学家和机器学习工程师,也为初学者提供了丰富的学习资源和实战机会。对于机器学习新手来说,选择合适的比赛和项目是至关重要的第一步。本文将为你推荐一些适合新手的Kaggle比赛和项目,并提供一些实用的建议,帮助你在机器学习的道
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&