- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 反激与正激拓扑:区别、选型与应用
DeepGpt
电力电子介绍单片机嵌入式硬件
1.反激与正激的区别反激和正激是两种常见的隔离型开关电源拓扑,主要区别体现在工作原理、电路结构和性能特性上。(1)工作原理反激(Flyback)能量存储与传输:变压器在开关导通时存储能量(电感模式),开关关断时将能量传递到次级。工作模式:基于电感储能,类似于Boost-Buck组合。开关周期:开关导通:初级电流上升,变压器储能,次级二极管反偏。开关关断:变压器释放能量,次级二极管导通,能量传输到负
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- HarmonyOS NEXT-Flutter混合开发之鸿蒙-代码实践
harmonyos-next
在Flutter三端分离模式下完成纯血鸿蒙混入的过程中,虽然官方文档提供了一定的指导,但实际操作中可能会遇到一些坑。以下是我在适配过程中的一些经验总结,供各位开发者参考如果有帮助点个赞。在混入过程中是基于咸鱼团队flutter_boost(这里不讨论和其他方案的差别)和自定义FlutterPlugin实现的。主要涉及内容:环境搭建Fluttermodule创建Futter引入flutter_boo
- 基于boost的共享内存通信demo
CV工程师小朱
C++共享内存IPC通信进程通信父子进程
文章目录前言一、共享内存管理二、图像算法服务中的IPC通信流程三、demo实验结果总结前言在一个系统比较复杂的时候,将模块独立成单独的进程有助于错误定位以及异常重启恢复,不至于某个模块发生崩溃导致整个系统崩溃。当通信数据量比较大时,例如图像数据,可以使用共享内存在进程间交互,比socket快很多。下面介绍一个利用Boost.interprocess和Boost.process模块进行进程间图像数据
- 梯度提升决策树(GBDT)
binggorun
决策树算法机器学习
GBDT(GradientBoostingDecisionTree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫MART(MultipleAdditiveRegressionTree),它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。原理GBDT的核心思想是将多个弱学习器(通常是决策树)组合成一个强大的预测模型。具体
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 储能变流器硬件工程师能力提升路径
DOMINICHZL
硬件能源硬件工程
储能变流器(PCS,PowerConversionSystem)作为储能系统的核心部件,其硬件设计涉及电力电子、控制理论、热管理、电磁兼容(EMC)等多领域技术。以下是储能变流器行业硬件工程师需要具备的核心能力,以及技术提升的路径建议:一、储能变流器硬件工程师的核心能力电力电子基础能力拓扑设计与分析:熟悉Boost/Buck、双向DC-DC、三相逆变器、LLC谐振变换器等拓扑结构,并能根据效率、成
- 在windows上通过idea搭建doris fe的开发环境(失败案例,很多报错都是因为我是离线环境编译,还是得联网可能会顺利点)
fzip
DorisDoris在CentOS7编译
以下是基于Windows10+CentOS环境通过IntelliJIDEA搭建DorisFE开发环境的完整指南,整合多份部署文档的关键步骤和避坑要点:一、前置环境准备1.准备Linux环境,可以使用CentOS7或者8•操作步骤:更新系统包:yumgroupinstall-y"DevelopmentTools"yuminstall-yautomakebisonflexboost-devellibe
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- 在 CLion 中使用 Boost.Test 进行 C++ 单元测试
獨梟
单元测试c++单元测试开发语言
1.安装Boost.TestBoost.Test是BoostC++库的一部分,因此需要安装完整的Boost库。方法1:使用包管理器安装(推荐)Windows(vcpkg)直接使用CLion集成的vcpkg安装boost-test:也可以通过命令来安装:gitclonehttps://github.com/microsoft/vcpkg.gitcdvcpkgbootstrap-vcpkg.batvc
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
艾派森
数据挖掘实战合集python人工智能数据挖掘信息可视化数据分析
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- Arc 浏览器内显示全链接
江梦寻
macosedge浏览器前端javascript经验分享网络windows
前言arc浏览器由于其优秀的UI和交互效果获得了一批忠实用户,其分享下载的营销方式抓住用户想尝新的事物。用了好几个月后发现这个浏览器真的不错,方便的小窗方式,简单快速的网页优化方案(boost)等,都让我慢慢放弃了chrome浏览器。目前唯一不爽的一点就是没法显示fullURL。有时候在测试环境和正式环境的相同开发工具中不断切换,会把环境搞乱,因此每次都要从sidebar中检查一遍URL再开始操作
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- Vivo手机的提速模式解析及编程实现
雨中微步
智能手机编程
随着智能手机的普及,人们对手机的性能要求越来越高。为了满足用户对手机性能的追求,各大手机厂商纷纷推出了提速模式来优化手机的性能表现。其中,vivo手机的"Boost模式"就是一种提速模式,旨在通过优化系统资源的分配和调度,提升手机的运行速度和响应能力。在本文中,我们将详细解析vivo手机的Boost模式,并提供相应的编程示例。Boost模式的原理Boost模式通过一系列的优化措施来提升vivo手机
- XGBoost系列文章(四):参数调优与模型训练
什么都想学的阿超
原理概念#机器学习机器学习xgboost
XGBoost系列文章(四):参数调优与模型训练本文是XGBoost系列的第四篇,聚焦参数调优与模型训练实战,从参数分类到调优技巧,结合代码示例解析核心方法。内容涵盖学习率、正则化、采样策略、早停法等关键环节,帮助读者快速掌握工业级调参方案。1.XGBoost的三大类参数(通用参数、Booster参数、任务参数)分别是什么?XGBoost参数分为三大类,控制不同层面的行为:参数类型作用范围常用参数
- 数据挖掘实习面经一
Y1nhl
搜广推面经数据挖掘人工智能机器学习推荐算法python风控算法搜索引擎
写在前面:其实数据挖掘、风控、机器学习算法与搜广推的八股还是有重合的部分,毕竟都是面对结构化数据。特别是我自己是做竞赛的,平时LGBM、CatBoost用的挺多的,所以感觉这些八股还是有必要看看,建议大家也可以看一下。京东数据挖掘算法一、介绍贝叶斯优化的原理贝叶斯优化(BayesianOptimization)是一种用于优化黑盒函数的有效方法,特别适用于目标函数评估成本较高、不可导或难以解析表达的
- 机器学习与深度学习资料
JasonDing1354
【MachineLearning】
《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、DeepLearning.《DeepLearninginNeuralNetworks:AnOverview》介绍:这是瑞士人工智能实验室JurgenSchmidhuber写的最新版本《神经网络与深度学习综述》本综述的特点是以
- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 码上用它开始Flutter混合开发——FlutterBoost
阿里云云栖号
native容器
为什么要混合方案具有一定规模的App通常有一套成熟通用的基础库,尤其是阿里系App,一般需要依赖很多体系内的基础库。那么使用Flutter重新从头开发App的成本和风险都较高。所以在NativeApp进行渐进式迁移是Flutter技术在现有NativeApp进行应用的稳健型方式。闲鱼在实践中沉淀出一套自己的混合技术方案。在此过程中,我们跟GoogleFlutter团队进行着密切的沟通,听取了官方的
- flutter_boost接入及分析
Huang兄
Flutterandroidandroiddartflutterfluterboost
2019-09-12文章目录集成过程添加依赖在flutter_nodule侧在原生Android侧尝试flutter_boost流程在flutter中打开flutter或者原生在flutter中关闭页面flutter_boost地址:https://github.com/alibaba/flutter_boost集成之后的项目地址:https://github.com/huangyuanlove/
- Flutter接入FlutterBoost进行跳转,并实现Flutter与Native的通信
氦客
跨平台移动开发FlutterFlutterBoostAndroid接入跳转
FlutterBoost是什么FlutterBoost是阿里系闲鱼技术团队开源的Flutter插件。FlutterBoost的理念是将Flutter像Webview那样来使用。在现有应用程序中同时管理Native页面和Flutter页面并非易事,FlutterBoost帮你处理页面的映射和跳转,使你只需关心页面的名字和参数即可(通常可以是URL)。如何接入FlutterBoost一般参考Flutt
- GrandientBoostingClassifier函数介绍
浊酒南街
#机器学习算法GBDT
目录前言用法示例前言GradientBoostingClassifier是Scikit-learn库中的一个分类器,用于实现梯度提升决策树(GradientBoostingDecisionTrees,GBDT)算法。GBDT是一种强大的集成学习方法,能够通过逐步构建一系列简单的决策树(通常是浅树)来提高模型的预测性能。它在多个机器学习竞赛中表现出色,是用于分类和回归任务的流行选择。用法fromsk
- 3D晶格与图论:BFS在空间网络中的应用
t0_54coder
3d图论宽度优先个人开发
引言在现代计算科学中,3D晶格模拟是许多物理、化学和材料科学研究中的重要工具。通过将3D空间中的每个单元看作图论中的顶点(Vertex),并通过边(Edge)连接相邻的单元,可以构建一个复杂的图结构来模拟和分析这些晶格的特性。本文将探讨如何使用BoostGraphLibrary(BGL)来实现这一模拟,并通过广度优先搜索(Breadth-FirstSearch,BFS)来识别和统计晶格中的孤立互联
- 【C++】35.智能指针(2)
流星白龙
C++学习c++开发语言
文章目录5.shared_ptr和weak_ptr5.1shared_ptr循环引用问题5.2weak_ptr6.shared_ptr的线程安全问题7.C++11和boost中智能指针的关系8.内存泄漏8.1什么是内存泄漏,内存泄漏的危害8.2如何检测内存泄漏(了解)8.3如何避免内存泄漏9.定制删除器5.shared_ptr和weak_ptr5.1shared_ptr循环引用问题shared_p
- XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
机器学习理论机器学习xgboostlightgbmcatboost参数调优人工智能
梯度提升树(GradientBoostingDecisionTrees,GBDT)作为机器学习领域的核心算法,在结构化数据建模中始终占据统治地位。本文将深入解析三大主流实现框架:XGBoost、LightGBM和CatBoost,通过原理剖析、参数详解和实战对比,助你全面掌握工业级建模利器。一、算法原理深度对比1.XGBoost:工程优化的奠基者核心创新:二阶泰勒展开:利用损失函数的一阶导和二阶导
- ceph bluestore Blob 分析
only火车头
Ceph
cephversion:11.0.0bluestore包含一个非常重要的结构,Blob,本节主要分析Blob,注意ceph版本是基于11.0.0的。1.BlobstructBlob:publicboost::intrusive::set_base_hookextents;///unused_t;unused_tunused;///>buffer_map;Cache*cache;state_list
- 酷克数据启动鲲鹏原生应用开发合作
数据库
4月28日,北京酷克数据科技有限公司(以下简称“酷克数据”)与华为举办鲲鹏原生应用开发启动仪式。酷克数据将基于鲲鹏硬件底座、OpenEuler、开发套件KunpengDevKit、应用使能套件KunpengBoostKit开展面向金融、政务、电信、能源、交通等重点行业的原生应用开发,打造基于鲲鹏架构的云数仓产品解决方案,并持续发布性能更优的鲲鹏商用软件版本,帮助企业构建高效、稳定、自主可控的数据底
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S