HDU 5726 GCD(RMQ + 二分)

GCD



Problem Description
Give you a sequence of N(N100,000) integers : a1,...,an(0<ai1000,000,000). There are Q(Q100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs (l,r)(1l<rN)such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
 

Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.

The first line of each case contains a number N, denoting the number of integers.

The second line contains N integers, a1,...,an(0<ai1000,000,000).

The third line contains a number Q, denoting the number of queries.

For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
 

Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l,r) such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
 

Sample Input
 
   
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
 

Sample Output
 
   
Case #1: 1 8 2 4 2 4 6 1 题意:给出一个数列 ,m次询问,每次询问 l,r区间内的gcd值 和 与该区间gcd值相同的区间有多少个 分析: 枚举每一个左端点,找每个左端点对应的所有gcd值区间,预处理出来,由于gcd值呈阶梯下降,所以完全可以处理,此时顺便用map统计区间个数 一开始考虑的是用线段树取gcd值,在加上二分处理,但是发现这样做其实复杂度达到了 n*logn*logn*logn ,直接T掉,然后想到用RMQ O(1)去处理gcd值,降下一个logn成功AC
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#pragma comment(linker, "/STACK:1024000000,1024000000");

using namespace std;

#define INF 0x3f3f3f3f

int n;
int a[100005];

int dp[100006][30];
int mm[100005];
void initRMQ(int n,int b[])
{
    mm[0]=-1;
    for(int i=1;i<=n;i++)
    {
        mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
        dp[i][0]=b[i];
    }
    for(int j=1;j<=mm[n];j++)
        for(int i=1;i+(1<>1;
        int g=rmq(i,mid);
        if(__gcd(g,gcd)>=gcd) l=mid+1;
        else r=mid-1;
    }
    if(__gcd(gcd,rmq(i,l))!=gcd) l--;
    return l;
}

int main()
{
    memset(a,1,sizeof a);
    int T;
    int ca=1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
        }
        initRMQ(n,a);
        mapmp;
        for(int i=1; i<=n; i++)
        {
            int gcd=a[i];
            int pos=i;
            while(pos<=n)
            {
                int pos1=Fr(gcd,pos);
                mp[gcd]+=pos1-pos+1;
                pos=pos1+1;
                gcd=__gcd(gcd,a[pos]);
            }
        }
        int m;
        scanf("%d",&m);
        printf("Case #%d:\n",ca++);
        while(m--)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            int gcd=rmq(a,b);
            printf("%d %lld\n",gcd,mp[gcd]);
        }
    }
    return 0;
}


你可能感兴趣的:(===数据结构===,RMQ)