Give you a sequence of N(N≤ 100,000) integers : a1,…,an(0< ai≤ 1000,000,000). There are Q(Q≤ 100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,…,ar) and count the number of pairs(l′,r′)(1≤l < r ≤ N)such that gcd(al′,al′+1,…,ar′) equal gcd(al,al+1,…,ar).
Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.
The first line of each case contains a number N, denoting the number of integers.
The second line contains N integers, a1,…,an(0 < ai ≤ 1000,000,000).
The third line contains a number Q, denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,…,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+1,…,ar′) equal gcd(al,al+1,…,ar).
Sample Input
1
5
1 2 4 6 7
4
1 5
2 4
3 4
4 4
Sample Output
Case #1:
1 8
2 4
2 4
6 1
题意:给一个数组a,大小为n,接下来有m个询问,每次询问给出l、r,定义f[l,r]=gcd(al,al+1,…,ar),问f[l,r]的值 和 有多少对(l’,r’)使得f[l’,r’]=f[l,r]。n<=10万,m<=10万,1<=l<=r<=n,1<=l’<=r’。
思路:
第一步比较简单,预处理一下,定义f[i][j]为:ai开始,连续2^j个数的最大公约数,所以f[1][0]=a[1],f[1][1]=gcd(a1,a2),f[1][2]=gcd(a1,a2,a3,a4)。其实就是动态规划,让i从1-n,让j从0-17,递推上去即可。
递推公式如下:
1. f[i][0]=a[i];
2. f[i][j]=gcd(f[i][j-1],f[i+(1 << j-1)][j-1]);
就如同f[1][2]=gcd(f[1][1],f[3][1])=gcd(gcd(f[1][0],f[2][0]),gcd(f[3][0],f[4][0]));
通过上述预处理,查询时就只需O(logn)时间,如下:
令k=log2(r-l+1),look(l,r)=gcd(f[l][k],f[r-(1 << k)+1][k]);
注:f[l][k] 和 f[r-(1 << k)+1][k]可能会有重叠,但不影响最终的gcd值。
比赛时第二步没想出来,太可惜了。。。
第二步,我们可以枚举左端点 i 从1-n,对每个i,二分右端点,计算每种gcd值的数量,因为如果左端点固定,gcd值随着右端点的往右,呈现单调不增,而且gcd值每次变化,至少除以2,所以gcd的数量为nlog2(n)种,可以开map < int,long long > 存每种gcd值的数量,注意n大小为10万,所以数量有可能爆int。
#include
using namespace std;
typedef long long ll;
int n;
int gd[100100][18];
map<int,long long> mp;
int gcd(int a,int b)
{
return (b==0)?a:gcd(b,a%b);
}
int a[100100];
void ST()
{
for(int j=1;(1<for(int i=1;i+(1<1<=n;i++)
{
gd[i][j]=gcd(gd[i][j-1],gd[i+(1<<(j-1))][j-1]);
}
}
}
int rmq(int i,int j)
{
int k=0;
while((1<<(k+1))<=j-i+1) k++;
return gcd(gd[i][k],gd[j-(1<1][k]);
}
int main()
{
int t;
scanf("%d",&t);
for(int cc=1;cc<=t;cc++)
{
mp.clear();
printf("Case #%d:\n",cc );
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
gd[i][0]=a[i];
}
ST();
for(int i=1;i<=n;i++)
{
int l=i,r=n;
int g=a[i];
while(l<=n)
{
int ll=l;
while(l<=r){
int mid=(l+r)>>1;
if(rmq(i,mid)==g)
l=mid+1;
else r=mid-1;
}
mp[g]+=(r-ll+1);
g=gcd(g,a[l]);
r=n;
}
}
int q;
scanf("%d",&q);
while(q--){
int c,d;
scanf("%d%d",&c,&d);
int res=rmq(c,d);
printf("%d %lld\n",res,mp[res]);
}
}
}