笛卡尔树 解题报告

笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2。首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大。其次所有结点的K2关键字满足优先队列(不妨设为最小堆)的顺序要求,即该结点的K2值比其子树中所有结点的K2值小。给定一棵二叉树,请判断该树是否笛卡尔树。

输入格式:

输入首先给出正整数N(≤1000),为树中结点的个数。随后N行,每行给出一个结点的信息,包括:结点的K1值、K2值、左孩子结点编号、右孩子结点编号。设结点从0~(N-1)顺序编号。若某结点不存在孩子结点,则该位置给出−1。

输出格式:

输出YES如果该树是一棵笛卡尔树;否则输出NO

输入样例1:

6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 21 -1 4
15 22 -1 -1
5 35 -1 -1

输出样例1:

YES

输入样例2:

6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 11 -1 4
15 22 -1 -1
50 35 -1 -1

输出样例2:

NO

 思路:

这道题第一个点就是寻找根节点,什么是根节点?就是没有父节点。寻找到根节点之后,我们根据堆和搜索书的特点进行判断即可。

一开始这道题。。。没怎么看,因为看到第一眼就感觉是让你建堆的同时去建树应该会很麻烦,所以也就没做,后面静下心来看看还是并不难的,只是给你了一些带点让你去判断,提干已经给你构造好了,所以做题不能怕,审题要好好的审不能吓自己。

下面给出AC代码:

#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=1e5+10;
struct node
{
    int k1,k2;
    int left,right;
}a[maxn];

bool vis[maxn];
int insort[maxn],pos=0;
bool flag=true;

void duipd(int root)
{
    if(root==-1) return;

    if(a[root].left!=-1)
    {
        int left=a[root].left;
        if(a[left].k2>n;
    for(int i=0;i

 

你可能感兴趣的:(天梯赛,二叉搜索树)