- 一键掌控海量文件!Shell的find命令终极指南 + 高阶组合技
芯有所享
java前端android经验分享
你是否经历过这些崩溃瞬间?想清理3个月前的日志却无从下手要在10万张图片里找出某个版本突然发现服务器被临时文件塞爆…今天介绍的Linux三剑客之find命令,就是你的超级救星!不仅能精准定位文件,结合其他命令更能玩出自动化运维的花样!一、Find基础三连击(新手必看)按图索骥-名称搜索查找当前目录所有.txt文件(精准匹配)find.-name“*.txt”忽略大小写找配置文件(模糊匹配)find
- 【运维的七种武器】
搞技术的季
运维
最近项目陆续增加,相应的运维方面压力逐步攀升,经常出现打包和发布失败的情况,给交付团队带来困扰。运维技术是随着软件技术的发展同步发展起来的,当前复杂的软件技术架构对运维的稳定和高效带了了很大挑战。一、运维平台发展史:1.第一阶段,以专业化网管工具为代表,包括网络设备、主机、数据库、中间件、存储等进行专业监控管理的各种专业化工具。2.第二阶段,以ITIL流程化管理为代表的综合网管,通过事件、服务、流
- 从 0 到 1 构建 Python 分布式爬虫,实现搜索引擎全攻略
七七知享
Pythonpython分布式爬虫搜索引擎算法程序人生网络爬虫
从0到1构建Python分布式爬虫,实现搜索引擎全攻略在大数据与信息爆炸的时代,搜索引擎已然成为人们获取信息的关键入口。你是否好奇,像百度、谷歌这般强大的搜索引擎,背后是如何精准且高效地抓取海量网页数据的?本文将带你一探究竟,以Python为工具,打造属于自己的分布式爬虫,进而搭建一个简易搜索引擎,完整呈现从底层代码编写到系统搭建的全过程。通过本文的实践,我们成功打造了Python分布式爬虫,并以
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- Hive面试题
御风行云天
面试题大全hivehadoop数据仓库面试
Hive面试题1Hive基础概念1.1解释Hive是什么以及它的用途Hive的主要用途:1.2描述Hive架构和组件1.HiveCLI/Beeline和WebUI2.HiveQL3.HiveDriver(驱动)4.Metastore5.Compiler(编译器)6.Optimizer(优化器)7.Executor(执行器)8.HadoopCoreComponents(核心组件)9.HiveUDFs
- IDEA本地启动flink 任务
Direction_Wind
intellij-ideaflinkjava
1pom中添加org.apache.flinkflink-clients_${scala.binary.version}${flink.version}org.apache.flinkflink-runtime-web_${scala.binary.version}${flink.version}2下载flink-dist包并3打印日志中搜索localhost可以找到flink的管理页面
- 生成式对抗网络在人工智能艺术创作中的应用与创新研究
辛迎蕌
人工智能
摘要本文深入探究生成式对抗网络(GAN)在人工智能艺术创作领域的应用与创新。通过剖析GAN核心原理,阐述其在图像、音乐、文学等艺术创作中的实践,分析面临的挑战与创新方向,呈现GAN对艺术创作模式的变革,为理解人工智能与艺术融合发展提供全面视角。一、引言在人工智能与艺术深度融合的时代浪潮中,生成式对抗网络(GAN)作为一项突破性技术,为艺术创作带来了全新的可能性。它打破传统创作边界,以独特的对抗学习
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- HarmonyOS实战开发-如何打造购物商城APP。
码牛程序猿
鸿蒙工程师HarmonyOS鸿蒙harmonyosOpenHarmony鸿蒙鸿蒙应用开发华为鸿蒙开发HarmonyOS
今天给大家分享一个非常好的实战项目,购物商城,购物商城是一个集购物、娱乐、服务于一体的综合性平台,致力于为消费者提供一站式的购物体验。各种功能都有涉及,最适合实现学习。做好商城项目,肯定会把开发中遇到的百分之60的技术得到实战的经验。下面介绍一下商城的主要模块:首页1,搜索框,点击进入搜索页面2,顶部分类,通过不同分类查询对应信息3,广告轮播,自动切换图片,可以进行点击进入4,商品列表,展示每个项
- 浮点数Float概述
CoderIsArt
C++11浮点数
浮点数:概述浮点数是计算机中表示分数和极大/极小数字的一种基本方式。它们在科学计算、图形学以及其他需要高精度和大范围的领域中广泛应用。以下是浮点数相关关键概念和挑战的总结:1.什么是浮点数?浮点数是一种在计算机中表示实数(包括极大和极小的数字)的方式。它们由三部分组成:符号位:表示数字的正负。尾数(或有效数字):表示数字的有效位数。指数:决定数字的规模(或大小)。浮点数的值通过以下公式计算:值=尾
- AI人工智能 Agent:在赋能传统行业中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在赋能传统行业中的应用1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与发展1.1.2人工智能的三次浪潮1.1.3人工智能的现状与挑战1.2传统行业面临的困境1.2.1效率低下1.2.2成本高企1.2.3决策滞后1.3人工智能赋能传统行业的必要性1.3.1提高效率1.3.2降低成本1.3.3优化决策2.核心概念与联系2.1人工智能Agent的定义2.1.1Age
- 锥面箍接/快拆环突破!拆装效率飙升200%,终结机器人螺丝拆装时代
CodePatentMaster
机器人人工智能
颠覆性散热革新!宇树科技弹性散热架构让四足机器人稳定性提升40%核心价值杭州宇树科技通过弹性接触式散热仓盖与导流件协同设计,实现计算单元散热效率提升32%且抗冲击性能增强40%,攻克四足机器人高热工况下的核心组件易损难题[1][4]。一、技术原理深度剖析1.痛点定位:高动态场景下的散热与防护两难当前四足机器人的计算单元面临两大挑战:散热瓶颈:传统刚性固定导致接触热阻增加30%以上(见热成像对比数据
- API item_get 在电商平台的核心作用以及如何测试
index_all
数据供应商京东apijava大数据开发语言
在电商行业蓬勃发展的今天,跨平台运营已成为众多商家的必然选择。然而,随之而来的数据孤岛问题却成为了制约电商企业进一步发展的瓶颈。为了解决这一问题,电商大数据平台应运而生,而item_getAPI作为获取商品详情的关键接口,在其中扮演着至关重要的角色。本文将深入探讨item_getAPI在跨平台电商数据整合中的应用与优势,为电商企业在数据驱动的道路上提供有力支持。一、跨平台电商数据整合的挑战在跨平台
- 这些搜索技巧你不会?
前端后端
Hey,我是沉浸式趣谈本文首发于【沉浸式趣谈】,我的个人博客https://yaolifeng.com也同步更新。转载请在文章开头注明出处和版权信息。如果本文对您有所帮助,请点赞、评论、转发,支持一下,谢谢!每天搜索,你却只会简单输入几个词?搜索结果总被广告和无关内容淹没?掌握这些搜索技巧,让你不再在信息海洋中迷失,直达目标信息!基础搜索技巧1.多关键词搜索方式:关键词1关键词2关键词3例如:Py
- 没有好的学历,Java开发未来的路应该怎么走?
全干程序员demo
技术热文java开发语言
没有好的学历,Java开发未来的路应该怎么走?在当今数字化时代,技术发展日新月异,大模型应用、鸿蒙系统等新兴技术领域正在蓬勃发展,为Java开发者带来了新的机遇和挑战。即使没有高学历,Java开发者依然可以通过以下路径在这些新兴领域找到自己的发展方向,实现职业突破。一、拥抱新兴技术,拓宽技术边界(一)大模型应用:从开发到优化大模型技术正在重塑软件开发的各个环节。对于Java开发者来说,可以从以下几
- vr中的计算机知识,VR技术基本常识
淡庸
vr中的计算机知识
虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,
- rag-给一篇几百页的pdf,如何从中找到关键信息并汇总出关系图
蒸土豆的技术细节
人工智能
小思考对pdf肯定要做模糊chunk,能用模型切分就用模型切分,不能用模型就用规则,规则要尽可能保存连续文本,特殊数据格式(图、表格)必须完整保存,必须能被捕捉到。这些独立的表格or图数据,也要单独做embedding,以其中的title和行列title信息作embedding材料。也不能忘了传统搜索方法,基于搜索的、基于传统词频的、基于关键字的。。。假设已经找到了信息所在的目标,如果它是个表格,
- Python用Pyqt5制作音乐播放器
Aix959
python开发语言
具体效果如下需要实现的功能主要的几个有:1、搜索结果更新至当前音乐的列表,这样播放下一首是搜素结果的下一首2、自动播放3、滚动音乐文本4、音乐进度条5、根据实际情况生成音乐列表。我这里的是下面的情况,音乐文件的格式是歌名_歌手.mp3所以根据需求修改find_mp3_files方法,我这里返回的是[{"path":音乐文件路径,"music":歌名,"singer":歌手},{"path":音乐文
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- LeetCode第98题_验证二叉搜索树
@蓝莓果粒茶
算法leetcodelinux算法链表c++数据结构python
LeetCode第98题:验证二叉搜索树题目描述给你一个二叉树的根节点root,判断其是否是一个有效的二叉搜索树。有效二叉搜索树定义如下:节点的左子树只包含小于当前节点的数。节点的右子树只包含大于当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。难度中等问题链接https://leetcode.cn/problems/validate-binary-search-tree/示例示例1:输入:
- 并发爬虫实战:多线程高效抓取王者荣耀全英雄皮肤
YiFoEr_Liu
爬虫案例实操爬虫部署python爬虫python大数据
一、场景与挑战在网络爬虫开发中,我们常常面临以下挑战:需要处理成百上千个页面的数据抓取目标服务器存在反爬机制和请求频率限制单线程模式下载效率低下,难以充分利用带宽本文以王者荣耀英雄皮肤下载为例(日访问量超过1亿的热门游戏),演示如何通过Python并发编程实现高效数据抓取。二、技术选型分析2.1为什么选择并发线程?I/O密集型场景:网络请求占比90%以上GIL限制:Python线程适合I/O密集型
- AI图像技术:真实与虚假的博弈
XianxinMao
人工智能人工智能计算机视觉深度学习
标题:AI图像技术:真实与虚假的博弈文章信息摘要:随着AI生成图像技术的快速发展,虚假信息的传播风险急剧增加,引发了社会对信息真实性的广泛担忧。AI生成的图像几乎与真实照片无法区分,可能被用于制造虚假新闻、恶意攻击和商业欺诈,导致社会信任危机。为应对这一挑战,Meta开发了StableSignature技术,通过在AI生成图像中嵌入不可见且防篡改的水印,有效识别和追踪图像来源。这项技术具有鲁棒性、
- 【服务器数据恢复】数据中心存储服务器VMware vSAN分布式存储架构数据恢复解析
海境超备
服务器分布式架构网络安全系统安全运维
随着企业数据中心的数据量的不断增加,数据存储和恢复成为了企业必须面对的重要问题。vSAN(VirtualStorageAreaNetwork)分布式存储架构是一种新型的存储技术,它可以有效地解决企业数据存储和管理方面的问题。本文将详细介绍vSAN分布式存储架构的原理和特点,并解析其数据恢复的原理和方法。分布式文件系统(DistributedFileSystem,DFS)是一种能够在多台计算机之间共
- 笔记:代码随想录算法训练营day57:99.岛屿数量 深搜、岛屿数量 广搜、100.岛屿的最大面积
jingjingjing1111
深度优先算法笔记
学习资料:代码随想录注:文中含大模型生成内容99.岛屿数量卡码网题目链接(ACM模式)先看深搜方法:找到未标标记过的说明找到一片陆地的或者一片陆地的一个角落,dfs搜索是寻找相连接的陆地其余部分并做好标记#include#includeusingnamespacestd;intdirection[4][2]={0,1,-1,0,0,-1,1,0};voiddfs(constvector>&B612
- 正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发
inscode_039
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发正则表达式(RegularExpression,简称regex或regexp)是一种用于匹配字符串的模式描述语言。它广泛应用于文本处理、数据验证、搜索和替换等场景中。然而,正则表达式的复杂性和晦涩性常常让编程初学者望而却步。幸运的是,随着AI技术的进步,像InsCo
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 正则表达式:文本处理的瑞士军刀
六七_Shmily
数据结构与算法分析算法
正则表达式:文本处理的瑞士军刀正则表达式(RegularExpression,简称Regex)是一种用于匹配、查找和操作文本的强大工具。它通过定义一种特殊的字符串模式,可以快速地在文本中搜索、替换或提取符合特定规则的内容。正则表达式广泛应用于编程、文本编辑、数据处理等领域,是每个开发者必备的技能之一。一、正则表达式的核心概念1.模式(Pattern)正则表达式的核心是一个模式字符串,它定义了需要匹
- 群体智能优化算法-粒子群优化算法(Particle Swarm Optimization, PSO,含Matlab源代码)
HR Zhou
算法matlab智能优化算法优化
摘要(Abstract)粒子群优化(PSO)是一种基于群体智能的优化算法,受鸟群觅食行为的启发。PSO通过模拟粒子(个体)在搜索空间中的运动来寻找最优解。每个粒子根据自身的历史最优位置(pBest)和全局最优位置(gBest)动态调整速度和位置,从而在全局搜索和局部搜索之间取得平衡。PSO具有收敛速度快、实现简单、计算复杂度低等优点,广泛应用于函数优化、神经网络训练、工程优化等领域。算法介绍1.主
- 【今日EDA行业分析】2025年3月20日
知梦EDA
人工智能大数据物联网半导体行业分析EDA
今日EDA行业分析:应对技术封锁的突围之路一、引言在半导体产业的宏大版图中,EDA(电子设计自动化)软件宛如一颗闪耀的明珠,其重要性不言而喻。然而,当前国际竞争与地缘政治因素给EDA行业带来了诸多变数。今天,让我们一同深入剖析EDA行业的现状、面临的挑战以及未来的发展方向,并为行业从业者提供切实可行的行动建议。二、国际竞争与地缘政治影响(一)韩国企业的困境三星、SK海力士等韩国企业,因美国潜在的制
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo