程序参考文章:http://blog.csdn.net/gamesdev/article/details/17535755 程序优化2
简介:CUDA ,MPI,Hadoop都是并行运算的工具。CUDA是基于NVIDIA GPU芯片计算。
阐述:GPU有很多个核(几百个),每个核可以跑一个线程,多个线程组成一个单位叫做块。
举个例子:
有三个向量 int a, b, c; 我们要计算a和b的向量之和存放到c中。
一般C语言:for(int i=0; i<10; i++) c = a + b; 这个程序是顺序执行的!
CUDA编程做法:
GPU中的每个线程(核)有一个独立序号叫index,那么只要序号从0到9的线程执行c[index] = a[index] + b[index]; 就可以实现以上的for循环。GPU的可贵之处就是,可以并发运行多个线程,相当于一个时间内赋值10次。
////////////////////////
cuda.cu
////////////////////////
#include
#include
//运行在GPU
__global__ void vectorADD(int* a, int* b, int* c)
{
int index = threadIdx.x; //获得当前线程的序号
if(index < blockDim.x)
c = a + b;
}
int main ()
{
//定义10个GPU运算线程
int N = 10;
// 本地开辟三个数组存放我们要计算的内容
int* h_a = (int*) malloc (N * sizeof(int));
int* h_b = (int*) malloc (N * sizeof(int));
int* h_c = (int*) malloc (N * sizeof(int));
// 初始化数组A, B和C
for(int i=0; i>>(d_a, d_b, d_c);
// 将GPU运算完的结果复制回本地
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);
// 释放GPU的内存
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
// 验证计算结果
for(int j=0; j
警告!:这个例子是编译不通过的;
首先:对 threadidx的使用,只能在CU文件里面;
其次:在cu文件里初始化数组是错误的: int * a ; a = new int [x];是错误的; 并且 malloc也是不可以的;
再者:文件路径里面不能包含中文,否则会出现 MSB8791 这种错误!
2. 利用CUDA并行计算点云法线
两个函数都存在于CU文件里! 通过外部CPP文件函数进行调用
void normalEstimate(
pcl::PointCloud &input ,
pcl::PointCloud &output,
int k_,
float search_parameter_,
int THREAD_NUM
)
//运行在GPU//cal the Normal
__global__ void normalEstimateSingle(pcl::PointCloud &input ,pcl::PointCloud &output, int* nn_indices ,int* nn_dists, int Gap, float search_parameter_)
{
const size_t computeSize =input.size() / Gap;
const size_t tID = size_t(threadIdx.x );
int Mark;
clock_t startTime; // 开始计时
if ( tID == 0 ) startTime =clock( );// 选择任意一个线程进行计时
//Thread loop!//循环发现邻域!寻找法线!
for ( size_t idx = tID *computeSize; idx < ( tID + 1 ) * computeSize && idx < input.size(); ++idx ) {
// pOut[threadIdx.x] += pIn[i] * pIn[i];
Mark = pcl::searchForNeighbors (idx, search_parameter_, nn_indices, nn_dists);//对第IDX个建立索引!
if (Mark == 0){
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits::quiet_NaN ();
continue;
}
else {
if (!isFinite (input[idx]) || Mark == 0){
output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits::quiet_NaN ();
continue;
}
}
pcl::computePointNormal (input, nn_indices,output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2], output.points[idx].curvature);
pcl::flipNormalTowardsViewpoint (input_->points[idx], vpx_, vpy_, vpz_,
output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
}
if ( tID == 0 ) *pElapsed =clock( ) - startTime;// 结束计时,返回至主程序
}
//运行在CPU端!
// as the input
extern "C" void normalEstimate(
pcl::PointCloud &input ,
pcl::PointCloud &output,
int k_,
float search_parameter_,
int THREAD_NUM
)
{
// 在GPU上分配同样大小的三个数组
pcl::PointCloud &inputX ;
pcl::PointCloud &outputX;
int* nn_indices ;
int* nn_dists;
// 1、设置设备
cudaError_t cudaStatus = cudaSetDevice( 0 );// 只要机器安装了英伟达显卡,那么会调用成功
if ( cudaStatus != cudaSuccess )
{
fprintf( stderr, "调用cudaSetDevice()函数失败!" );
return ;//false;
}
// 使用CUDA内存分配器分配host端
//cudaError_t cudaStatus = cudaMallocHost( &inputX, input.size() * sizeof( pcl::pointXYZRGB ) );
//cudaError_t cudaStatus = cudaMallocHost( &outputX, output.size() * sizeof( pcl::Normal ) );
// 2、分配显存空间
cudaError_t cudaStatus = cudaMalloc( &inputX, input.size() * sizeof( pcl::pointXYZRGB ) );
cudaError_t cudaStatusX = cudaMalloc( &outputX, output.size() * sizeof( pcl::Normal ) );
// cudaStatus = cudaMalloc( (void**)&pData, DataSize * sizeof( int) );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "调用cudaMalloc()函数初始化显卡中数组时失败!" );
break;
}
// 3、将宿主程序数据复制到显存中
cudaError_t cudaStatus2 = cudaMemcpy( inputX, input, input.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
cudaError_t cudaStatusX2 = cudaMemcpy(outputX,output,output.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "调用cudaMemcpy()函数初始化宿主程序数据数组到显卡时失败!" );
break;
}
//cudaMalloc( (void**)&nn_dists, k_ * sizeof( int) );
//cudaMalloc( (void**)&nn_indices, k_ * sizeof( int) );
//cudaMalloc( (void**)&Normal3f, 3 * sizeof( float) );
// 4、执行程序,宿主程序等待显卡执行完毕
normalEstimateSingle<<<1, THREAD_NUM>>>( inputX,outputX, nn_indices, nn_dists, THREAD_NUM ,search_parameter_);
//normalEstimateSingle(pcl::PointCloud &input ,pcl::PointCloud &output, int* nn_indices ,int* nn_dists, int Gap)
// 5、查询内核初始化的时候是否出错
cudaStatus = cudaGetLastError( );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "显卡执行程序时失败!" );
break;
}
// 6、与内核同步等待执行完毕
cudaStatus = cudaDeviceSynchronize( );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "在与内核同步的过程中发生问题!" );
break;
}
// 7、获取数据 //只复制出法线即可!
cudaStatus = cudaMemcpy(output,outputX,output.size() * sizeof( pcl::pointXYZRGB ),cudaMemcpyHostToDevice );
if ( cudaStatus != cudaSuccess)
{
fprintf( stderr, "在将结果数据从显卡复制到宿主程序中失败!" );
break;
}
cudaFree( outputX );
cudaFree( inputX );
}
注意事项:运行在GPU的函数,只能是原子函数,详情请见 《高性能并行编程实践》