梳理caffe代码solver(十四)

之前有一篇介绍solver的求解,也可以看官网的介绍:here ,和翻译版的介绍。

solver.hpp头文件的简单解析:

#ifndef CAFFE_SOLVER_HPP_
#define CAFFE_SOLVER_HPP_
#include 
#include 
#include 

#include "caffe/net.hpp"
#include "caffe/solver_factory.hpp"

namespace caffe {

/**
  * @brief Enumeration of actions that a client of the Solver may request by
  * implementing the Solver's action request function, which a
  * a client may optionally provide in order to request early termination
  * or saving a snapshot without exiting. In the executable caffe, this
  * mechanism is used to allow the snapshot to be saved when stopping
  * execution with a SIGINT (Ctrl-C).
  */
//大概意思就是按Ctrl-C时,会保存当前训练时的模型,如果还在训练终端不小心被关闭时,可以接着上次继续训练
  namespace SolverAction {
    enum Enum {
      NONE = 0,  // Take no special action.
      STOP = 1,  //停止训练后,可以继续训练
      SNAPSHOT = 2  // Take a snapshot, and keep training.
    };
  }

/**
 * @brief Type of a function that returns a Solver Action enumeration.
 */
//学过java的可以理解为回滚操作,比如银行账户钱从一个用户转到另一个账户时,中途发生点意外,一个用户钱已经减了,另一个却没有增加,这时需要回滚操作,
//就像这时训练的时候中断了,然后回滚,到上次断点,继续训练。
typedef boost::function ActionCallback;

/**
 * @brief An interface for classes that perform optimization on Net%s.
 *
 * Requires implementation of ApplyUpdate to compute a parameter update
 * given the current state of the Net parameters.
 */
template 
class Solver {
 public:
  explicit Solver(const SolverParameter& param,
      const Solver* root_solver = NULL);
  explicit Solver(const string& param_file, const Solver* root_solver = NULL);
  void Init(const SolverParameter& param);
  void InitTrainNet();
  void InitTestNets();

  // Client of the Solver optionally may call this in order to set the function
  // that the solver uses to see what action it should take (e.g. snapshot or
  // exit training early).
  void SetActionFunction(ActionCallback func);
  SolverAction::Enum GetRequestedAction();
  //主函数,默认iter为0,非0的iter输入到预训练的网络中。
  virtual void Solve(const char* resume_file = NULL);
  inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
  void Step(int iters);
  // The Restore method simply dispatches to one of the
  // RestoreSolverStateFrom___ protected methods. You should implement these
  // methods to restore the state from the appropriate snapshot type.
  //存储函数实现如何存储solver到快照模型中。应该实现RestoreSolverState()函数这个函数是存储来自SolverState缓冲的状态
  void Restore(const char* resume_file);

  //Solver::Snapshot主要是基本的快照功能,存储学习的网络
  void Snapshot();
  virtual ~Solver() {}
  inline const SolverParameter& param() const { return param_; }
  inline shared_ptr > net() { return net_; }
  inline const vector > >& test_nets() {
    return test_nets_;
  }
  int iter() { return iter_; }
  //在迭代中调用特殊的点
  class Callback {
   protected:
    virtual void on_start() = 0;
    virtual void on_gradients_ready() = 0;

    template 
    friend class Solver;
  };
  const vector& callbacks() const { return callbacks_; }
  void add_callback(Callback* value) {
    callbacks_.push_back(value);
  }

  void CheckSnapshotWritePermissions();
  //返回slover的类型
  virtual inline const char* type() const { return ""; }

 protected:
  //生成和应用当前迭代的更新的值
  virtual void ApplyUpdate() = 0;
  string SnapshotFilename(const string extension);
  string SnapshotToBinaryProto();
  string SnapshotToHDF5();
  // 测试程序
  void TestAll();
  void Test(const int test_net_id = 0);
  virtual void SnapshotSolverState(const string& model_filename) = 0;
  virtual void RestoreSolverStateFromHDF5(const string& state_file) = 0;
  virtual void RestoreSolverStateFromBinaryProto(const string& state_file) = 0;
  void DisplayOutputBlobs(const int net_id);
  void UpdateSmoothedLoss(Dtype loss, int start_iter, int average_loss);

  SolverParameter param_;
  int iter_;//在测试的时候,需要迭代的次数,即test_iter* batchsize(测试集的)=测试集的大小,测试集batchsize可以在prototxt文件里设置  
  int current_step_;
  shared_ptr > net_;
  vector > > test_nets_;//test net可以有多个  
  vector callbacks_;//嵌套类,暂时还不知道它的作用 
  vector losses_;
  Dtype smoothed_loss_;

  //在数据并行中,继续根solver层保持根nets(包含共享的层)
  const Solver* const root_solver_;
  //通过函数是选择确认按钮来选择保存还是退出快照。
  ActionCallback action_request_function_;

  // True iff a request to stop early was received.
  bool requested_early_exit_;

  DISABLE_COPY_AND_ASSIGN(Solver);
};

//在多GPU计算时,仅仅计算梯度
template 
class WorkerSolver : public Solver {
 public:
  explicit WorkerSolver(const SolverParameter& param,
      const Solver* root_solver = NULL)
      : Solver(param, root_solver) {}

 protected:
  void ApplyUpdate() {}
  void SnapshotSolverState(const string& model_filename) {
    LOG(FATAL) << "Should not be called on worker solver.";
  }
  void RestoreSolverStateFromBinaryProto(const string& state_file) {
    LOG(FATAL) << "Should not be called on worker solver.";
  }
  void RestoreSolverStateFromHDF5(const string& state_file) {
    LOG(FATAL) << "Should not be called on worker solver.";
  }
};

}  // namespace caffe

#endif  // CAFFE_SOLVER_HPP_
实现部分:
#include 

#include 
#include 

#include "caffe/solver.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/hdf5.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/upgrade_proto.hpp"

namespace caffe {

template
void Solver::SetActionFunction(ActionCallback func) {
  action_request_function_ = func;
}

template
SolverAction::Enum Solver::GetRequestedAction() {
  if (action_request_function_) {
    // If the external request function has been set, call it.
    return action_request_function_();
  }
  return SolverAction::NONE;
}

template 
Solver::Solver(const SolverParameter& param, const Solver* root_solver)
    : net_(), callbacks_(), root_solver_(root_solver),
      requested_early_exit_(false) {
  Init(param);
}
//会调用Init()方法进行初始化,即Solver scaffolding 
template 
Solver::Solver(const string& param_file, const Solver* root_solver)
    : net_(), callbacks_(), root_solver_(root_solver),
      requested_early_exit_(false) {
  SolverParameter param;
  ReadSolverParamsFromTextFileOrDie(param_file, ¶m);
  Init(param);
}
/*
功能:初始化网络
步骤:
1. 设置随机数种子
2. 申请一块Net空间以下面的构造函数进行初始化
param_file=train_net_,net_指向这块空间
3. 如果有test_net,则申请一块Net空间,test_net_指向这块空间
输入:SolverParameter类型的param
输出:无
*/
template 
void Solver::Init(const SolverParameter& param) {
  CHECK(Caffe::root_solver() || root_solver_)
      << "root_solver_ needs to be set for all non-root solvers";
  LOG_IF(INFO, Caffe::root_solver()) << "Initializing solver from parameters: "
    << std::endl << param.DebugString();
  param_ = param;//为solver类的数据成员param_赋值
  CHECK_GE(param_.average_loss(), 1) << "average_loss should be non-negative.";
  CheckSnapshotWritePermissions();
  if (Caffe::root_solver() && param_.random_seed() >= 0) {
    Caffe::set_random_seed(param_.random_seed());
//调用Caffe命名空间里的set_random_seed函数,而不是caffe类的set_random_seed函数;param_.random_seed()实际
//上调用的是::google::protobuf::int64 random_seed()  
  }
  // Scaffolding code
  InitTrainNet();
  if (Caffe::root_solver()) {
    InitTestNets();
    LOG(INFO) << "Solver scaffolding done.";
  }
  iter_ = 0;
  current_step_ = 0;
}

template 
void Solver::InitTrainNet() {
  const int num_train_nets = param_.has_net() + param_.has_net_param() +
      param_.has_train_net() + param_.has_train_net_param();
  const string& field_names = "net, net_param, train_net, train_net_param";
//只能有一个train net
  CHECK_GE(num_train_nets, 1) << "SolverParameter must specify a train net "
      << "using one of these fields: " << field_names;
  CHECK_LE(num_train_nets, 1) << "SolverParameter must not contain more than "
      << "one of these fields specifying a train_net: " << field_names;
  NetParameter net_param;
  if (param_.has_train_net_param()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net specified in train_net_param.";
    net_param.CopyFrom(param_.train_net_param());
  } else if (param_.has_train_net()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net from train_net file: " << param_.train_net();
    ReadNetParamsFromTextFileOrDie(param_.train_net(), &net_param);
  }
  if (param_.has_net_param()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net specified in net_param.";
    net_param.CopyFrom(param_.net_param());
  }
  if (param_.has_net()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net from net file: " << param_.net();
    ReadNetParamsFromTextFileOrDie(param_.net(), &net_param);
  }
  //设置正确的网络状态,训练从默认开始,然后融入通过网络层规定在任何状态,最后融入训练状态(最优解)
  NetState net_state;
  net_state.set_phase(TRAIN);
//从低到高获取state,最终从最高优先级SolverParameter类型中的train_state,显然这会覆盖掉之前获取的state。  
  net_state.MergeFrom(net_param.state());
//这里获取的state可以为Netparameter中的state赋值,然后可以根据LayerParameter中的include和exclude来确定该层是否应该包含在网络中。  
  net_state.MergeFrom(param_.train_state());
//这是Initialize train net 的一部分工作。InitTestNets也是如此
  net_param.mutable_state()->CopyFrom(net_state);
  if (Caffe::root_solver()) {
//调用模板类的构造函数,进行net的初始化  
    net_.reset(new Net(net_param));
  } else {
    net_.reset(new Net(net_param, root_solver_->net_.get()));
  }
}
//需要注意的是TestNet可以有多个,而TrainNet只能有一个 
template 
void Solver::InitTestNets() {
  CHECK(Caffe::root_solver());
  const bool has_net_param = param_.has_net_param();
  const bool has_net_file = param_.has_net();
  const int num_generic_nets = has_net_param + has_net_file;
  CHECK_LE(num_generic_nets, 1)
      << "Both net_param and net_file may not be specified.";
  const int num_test_net_params = param_.test_net_param_size();
  const int num_test_net_files = param_.test_net_size();
  const int num_test_nets = num_test_net_params + num_test_net_files;
  if (num_generic_nets) {
      CHECK_GE(param_.test_iter_size(), num_test_nets)
          << "test_iter must be specified for each test network.";
  } else {
      CHECK_EQ(param_.test_iter_size(), num_test_nets)
          << "test_iter must be specified for each test network.";
  }
//可以有多个test net
  const int num_generic_net_instances = param_.test_iter_size() - num_test_nets;
//num_test_net_instances由num_test_nets 和 num_generic_net_instances 组成,实际上也就是param_.test_iter_size() 
  const int num_test_net_instances = num_test_nets + num_generic_net_instances;
  if (param_.test_state_size()) {
    CHECK_EQ(param_.test_state_size(), num_test_net_instances)
        << "test_state must be unspecified or specified once per test net.";
  }
  if (num_test_net_instances) {
    CHECK_GT(param_.test_interval(), 0);
  }
  int test_net_id = 0;
  vector sources(num_test_net_instances);
  vector net_params(num_test_net_instances);
  for (int i = 0; i < num_test_net_params; ++i, ++test_net_id) {
      sources[test_net_id] = "test_net_param";
      net_params[test_net_id].CopyFrom(param_.test_net_param(i));
  }
  for (int i = 0; i < num_test_net_files; ++i, ++test_net_id) {
      sources[test_net_id] = "test_net file: " + param_.test_net(i);
      ReadNetParamsFromTextFileOrDie(param_.test_net(i),
          &net_params[test_net_id]);
  }
  const int remaining_test_nets = param_.test_iter_size() - test_net_id;
  if (has_net_param) {
    for (int i = 0; i < remaining_test_nets; ++i, ++test_net_id) {
      sources[test_net_id] = "net_param";
      net_params[test_net_id].CopyFrom(param_.net_param());
    }
  }
  if (has_net_file) {
    for (int i = 0; i < remaining_test_nets; ++i, ++test_net_id) {
      sources[test_net_id] = "net file: " + param_.net();
      ReadNetParamsFromTextFileOrDie(param_.net(), &net_params[test_net_id]);
    }
  }
  test_nets_.resize(num_test_net_instances);
  for (int i = 0; i < num_test_net_instances; ++i) {
//设置正确的网络状态,训练从默认开始,然后融入通过网络层规定在任何状态,最后融入测试状态(最优解)
    NetState net_state;
    net_state.set_phase(TEST);
    net_state.MergeFrom(net_params[i].state());
    if (param_.test_state_size()) {
      net_state.MergeFrom(param_.test_state(i));
    }
    net_params[i].mutable_state()->CopyFrom(net_state);
    LOG(INFO)
        << "Creating test net (#" << i << ") specified by " << sources[i];
    if (Caffe::root_solver()) {
      test_nets_[i].reset(new Net(net_params[i]));
    } else {
      test_nets_[i].reset(new Net(net_params[i],
          root_solver_->test_nets_[i].get()));
    }
    test_nets_[i]->set_debug_info(param_.debug_info());
  }
}

template 
void Solver::Step(int iters) {
  const int start_iter = iter_;
  const int stop_iter = iter_ + iters;
  int average_loss = this->param_.average_loss();
  losses_.clear();
  smoothed_loss_ = 0;

  while (iter_ < stop_iter) {
    // 0初始化参数
    net_->ClearParamDiffs();
    //test_initialization默认为true
    if (param_.test_interval() && iter_ % param_.test_interval() == 0
        && (iter_ > 0 || param_.test_initialization())
        && Caffe::root_solver()) {
      TestAll();
      if (requested_early_exit_) {
        // Break out of the while loop because stop was requested while testing.
        break;
      }
    }

    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_start();
    }
    const bool display = param_.display() && iter_ % param_.display() == 0;
    net_->set_debug_info(display && param_.debug_info());
    // accumulate the loss and gradient
    Dtype loss = 0;
    for (int i = 0; i < param_.iter_size(); ++i) {
      loss += net_->ForwardBackward();
    }
    loss /= param_.iter_size();//accumulate(累积) gradients over `iter_size` x `batch_size` instances。默认情况下,iter_size=1,即默认情况下,一个iteratio一个batch
    // average the loss across iterations for smoothed reporting
    UpdateSmoothedLoss(loss, start_iter, average_loss);
    // average_loss [default = 1]——> Display the loss averaged over the last average_loss iterations  
    if (display) {
      LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_
          << ", loss = " << smoothed_loss_;
      const vector*>& result = net_->output_blobs();
      int score_index = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        const string& output_name =
            net_->blob_names()[net_->output_blob_indices()[j]];
        const Dtype loss_weight =
            net_->blob_loss_weights()[net_->output_blob_indices()[j]];
        for (int k = 0; k < result[j]->count(); ++k) {
          ostringstream loss_msg_stream;
          if (loss_weight) {
            loss_msg_stream << " (* " << loss_weight
                            << " = " << loss_weight * result_vec[k] << " loss)";
          }
          LOG_IF(INFO, Caffe::root_solver()) << "    Train net output #"
              << score_index++ << ": " << output_name << " = "
              << result_vec[k] << loss_msg_stream.str();
        }
      }
    }
    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_gradients_ready();
    }
    ApplyUpdate();

    // Increment the internal iter_ counter -- its value should always indicate
    // the number of times the weights have been updated.
    ++iter_;

    SolverAction::Enum request = GetRequestedAction();

    // Save a snapshot if needed.
    if ((param_.snapshot()
         && iter_ % param_.snapshot() == 0
         && Caffe::root_solver()) ||
         (request == SolverAction::SNAPSHOT)) {
      Snapshot();
    }
    if (SolverAction::STOP == request) {
      requested_early_exit_ = true;
      // Break out of training loop.
      break;
    }
  }
}
/*
对整个网络进行训练(也就是你运行Caffe训练某个模型)的时候,实际上是在运行caffe.cpp中的train()函数,而这个函数实际上是实例化一个Solver对象,初始化后调用了Solver中的Solve()方法  
调用此方法训练网络,其中会调用Step()方法来迭代,迭代 param_.max_iter() - iter_ 次
*/
template 
void Solver::Solve(const char* resume_file) {
  CHECK(Caffe::root_solver());
  LOG(INFO) << "Solving " << net_->name();
  LOG(INFO) << "Learning Rate Policy: " << param_.lr_policy();

  //任何时候开始求解,初始化失败
  requested_early_exit_ = false;

  if (resume_file) {
    LOG(INFO) << "Restoring previous solver status from " << resume_file;
    Restore(resume_file);
  }

  // For a network that is trained by the solver, no bottom or top vecs
  // should be given, and we will just provide dummy vecs.
  //对于一个正在训练的网络,没有bottom或top向量被给,而且仅仅提供dummy vecs
  int start_iter = iter_;
  Step(param_.max_iter() - iter_);
  // If we haven't already, save a snapshot after optimization, unless
  // overridden by setting snapshot_after_train := false
  if (param_.snapshot_after_train()
      && (!param_.snapshot() || iter_ % param_.snapshot() != 0)) {
    Snapshot();
  }
  if (requested_early_exit_) {
    LOG(INFO) << "Optimization stopped early.";
    return;
  }
  //在优化完后,运行一个额外的训练和测试过程展示训练测试的loss或者输出。
  if (param_.display() && iter_ % param_.display() == 0) {
    int average_loss = this->param_.average_loss();
    Dtype loss;
    net_->Forward(&loss);

    UpdateSmoothedLoss(loss, start_iter, average_loss);

    LOG(INFO) << "Iteration " << iter_ << ", loss = " << smoothed_loss_;
  }
  if (param_.test_interval() && iter_ % param_.test_interval() == 0) {
    TestAll();
  }
  LOG(INFO) << "Optimization Done.";
}

template 
void Solver::TestAll() {
  for (int test_net_id = 0;
       test_net_id < test_nets_.size() && !requested_early_exit_;
       ++test_net_id) {
    Test(test_net_id);
  }
}

template 
void Solver::Test(const int test_net_id) {
  CHECK(Caffe::root_solver());
  LOG(INFO) << "Iteration " << iter_
            << ", Testing net (#" << test_net_id << ")";
  //检查是否有layer共享于多个网络
  CHECK_NOTNULL(test_nets_[test_net_id].get())->
      ShareTrainedLayersWith(net_.get());
  vector test_score;
  vector test_score_output_id;
  const shared_ptr >& test_net = test_nets_[test_net_id];
  Dtype loss = 0;
  for (int i = 0; i < param_.test_iter(test_net_id); ++i) {
    SolverAction::Enum request = GetRequestedAction();
 
    //如果在训练或测试中断请求发出后,随时执行保存快照
    while (request != SolverAction::NONE) {
        if (SolverAction::SNAPSHOT == request) {
          Snapshot();
        } else if (SolverAction::STOP == request) {
          requested_early_exit_ = true;
        }
        request = GetRequestedAction();
    }
    if (requested_early_exit_) {
      // break out of test loop.
      break;
    }

    Dtype iter_loss;
    const vector*>& result =
        test_net->Forward(&iter_loss);
    if (param_.test_compute_loss()) {
      loss += iter_loss;
    }
    if (i == 0) {
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        for (int k = 0; k < result[j]->count(); ++k) {
          test_score.push_back(result_vec[k]);
          test_score_output_id.push_back(j);
        }
      }
    } else {
      int idx = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        for (int k = 0; k < result[j]->count(); ++k) {
          test_score[idx++] += result_vec[k];
        }
      }
    }
  }
  if (requested_early_exit_) {
    LOG(INFO)     << "Test interrupted.";
    return;
  }
  if (param_.test_compute_loss()) {
    loss /= param_.test_iter(test_net_id);
    LOG(INFO) << "Test loss: " << loss;
  }
  for (int i = 0; i < test_score.size(); ++i) {
    const int output_blob_index =
        test_net->output_blob_indices()[test_score_output_id[i]];
    const string& output_name = test_net->blob_names()[output_blob_index];
    const Dtype loss_weight = test_net->blob_loss_weights()[output_blob_index];
    ostringstream loss_msg_stream;
    const Dtype mean_score = test_score[i] / param_.test_iter(test_net_id);//求多次迭代Loss的平均值,也就是求多个batch的平局值,因为一次迭代用的是一个test batch-size 的图片
    if (loss_weight) {
      loss_msg_stream << " (* " << loss_weight
                      << " = " << loss_weight * mean_score << " loss)";
    }
    LOG(INFO) << "    Test net output #" << i << ": " << output_name << " = "
              << mean_score << loss_msg_stream.str();
  }
}
//输出当前网络状态到一个文件中。 
template 
void Solver::Snapshot() {
  CHECK(Caffe::root_solver());
  string model_filename;
  switch (param_.snapshot_format()) {
  case caffe::SolverParameter_SnapshotFormat_BINARYPROTO:
    model_filename = SnapshotToBinaryProto();
    break;
  case caffe::SolverParameter_SnapshotFormat_HDF5:
    model_filename = SnapshotToHDF5();
    break;
  default:
    LOG(FATAL) << "Unsupported snapshot format.";
  }

  SnapshotSolverState(model_filename);
}
//check快照的写入权限
template 
void Solver::CheckSnapshotWritePermissions() {
  if (Caffe::root_solver() && param_.snapshot()) {
    CHECK(param_.has_snapshot_prefix())
        << "In solver params, snapshot is specified but snapshot_prefix is not";
    string probe_filename = SnapshotFilename(".tempfile");
    std::ofstream probe_ofs(probe_filename.c_str());
    if (probe_ofs.good()) {
      probe_ofs.close();
      std::remove(probe_filename.c_str());
    } else {
      LOG(FATAL) << "Cannot write to snapshot prefix '"
          << param_.snapshot_prefix() << "'.  Make sure "
          << "that the directory exists and is writeable.";
    }
  }
}
//Snapshot的名字
template 
string Solver::SnapshotFilename(const string extension) {
  return param_.snapshot_prefix() + "_iter_" + caffe::format_int(iter_)
    + extension;
}
//Snapshot保存为二进制proto的模型
template 
string Solver::SnapshotToBinaryProto() {
  string model_filename = SnapshotFilename(".caffemodel");
  LOG(INFO) << "Snapshotting to binary proto file " << model_filename;
  NetParameter net_param;
  net_->ToProto(&net_param, param_.snapshot_diff());
  WriteProtoToBinaryFile(net_param, model_filename);
  return model_filename;
}
//Snapshot保存为HDF5模型
template 
string Solver::SnapshotToHDF5() {
  string model_filename = SnapshotFilename(".caffemodel.h5");
  LOG(INFO) << "Snapshotting to HDF5 file " << model_filename;
  net_->ToHDF5(model_filename, param_.snapshot_diff());
  return model_filename;
}
//从一个文件中读入网络状态,并可以从那个状态恢复。 
template 
void Solver::Restore(const char* state_file) {
  CHECK(Caffe::root_solver());
  string state_filename(state_file);
  if (state_filename.size() >= 3 &&
      state_filename.compare(state_filename.size() - 3, 3, ".h5") == 0) {
    RestoreSolverStateFromHDF5(state_filename);
  } else {
    RestoreSolverStateFromBinaryProto(state_filename);
  }
}
//迭代时平均loss的smooth报告,翻译不是很准   
template 
void Solver::UpdateSmoothedLoss(Dtype loss, int start_iter,
    int average_loss) {
  if (losses_.size() < average_loss) {
    losses_.push_back(loss);
    int size = losses_.size();
    smoothed_loss_ = (smoothed_loss_ * (size - 1) + loss) / size;
  } else {
    int idx = (iter_ - start_iter) % average_loss;
    smoothed_loss_ += (loss - losses_[idx]) / average_loss;
    losses_[idx] = loss;
  }
}

INSTANTIATE_CLASS(Solver);

}  // namespace caffe


你可能感兴趣的:(caffe)