最大子数组问题 Maximum Subarray

Maximum Subarray

标签(空格分隔): algorithm


这个问题我们先看下问题的描述:

问题描述

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

问题来自于Leetcode:Maximum Subarray


问题分析

简单来说,就是在一个数组 A1...n 中找到一个子数组 Ai...j 使得
jk=iAk 最大,也有找最小值的(可以转化为找最大值的问题,不再详述)

  • 那么最直接的想法,就是对于每一个 i,j,ij 遍历整个数组,用一个最大值标记一下,就能都找到最大值了。对于每一个 i,j 组合总共有 n(n+1)2 个子数组,都遍历一次数组,那么可以看出来整个的复杂度为 O(n3)

解决方案

1.按着上面的思路,我们可以写出如下的程序来

int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        if(n == 0)
            return 0;
        if(n == 1)
            return nums[0];
        int max = 0x80000001;//最小的32位整数
        int sum = 0;
        for(int i =0;ifor(int j=0;j0;
                 /*计算 A[i,j] 的和*/
                 for(int k=i;k<=j;++k){
                    sum += nums[k]; 
                 }
                /**更新最大值max*/
                if(sum > max)
                    max = sum;
             }
        }
        return max;
    }
  • 但是这种方法在Leetcode上面没有通过,因为超时了。时间复杂度太高了。如果数据很大,那么会很慢。

2.上面的解决方案1需要重复计算每个子数组的部分过程

  • 上面的算法我们每次是按着 (i,j) 对来计算的,如果我们当纯来想如何求所有的子数组的过程,可以发现,对于一个特定的 i ,我们可以计算 (i,i),(i,i+1),(i,i+2)(i,n1) 的和,
    j+1k=iAk=Aj+1+jk=iAk 可以充分利用前面计算出来的 jk=iAk ,来降低时间复杂度。
  • 那么就不用对于每一个 (i,j) 都从 i j 遍历数组,那么时间复杂度可以降低为 O(n2)
  • 所以可以有如下优化的代码
int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        if(n == 0)
            return 0;
        if(n == 1)
            return nums[0];
        int max = 0x80000001;//最小的32位整数
        int sum = 0;
        for(int i=0;i0;
            /**对于某个特定的i 分别计算A[i,i+1],A[i,i+2],...A[i,n-1]的和*/
            for(int j=i;j/**更新最大值max*/
                if(sum > max )
                    max = sum;
            }
        }
        return max;
}
  • 噩耗再次传来,⊙﹏⊙b汗
  • 没有通过leetcode测试,还是超时了
  • 那么看样子时间复杂度还需要降低才可以。不然找不到工作了。。。

2.下面采用的分治的算法,从最大子数组出现的位置来考虑的。可以参考<算法导论>的第4章内容

  • 分治的思想是,把数组 Aij,ij 看成两个部分,可以认为是从数组中间分割成
    Aik Ak+1j,k=i+j2 两个数组,那么我们的目标就是通过求这两个子数组的最大值,然后求得目前这个数组 Aij 的最大子数组和的值。那么问题来了,如果你知道了 Aik 的最大子数组的和 max_left Ak+1j 的最大子数组的和 max_right ,你怎么求解目前这个数组 Aij 的最大子数组的和?⊙﹏⊙b汗
  • 可以分析下,如果知道了 max_left max_right ,那么我们分析下 max_left max_right 的构成。
  • max_left=endt=startAt,starti,end<k
  • max_right=endt=startAt,start>k,endj
  • 从上面的表达式可以看出来 max_left k 左边的某个子数组的和, max_right k 右边的某个子数组的和,具体是什么我们可以先不用管了,因为,这两个值都是假设已经知道的。
  • 那么整个 Aij 最大子数组的和,出现的子数组的位置还有一种可能,那就是,在左边有一部分,右边也有一部分,并且包含 Ak 这个元素。也就是子数组和的形式为 k1t=startAt+Ak+endt=k+1At ,哎呦这样看来不就是和之前 jt=iAt 形式一致了么?有神马意义⊙﹏⊙b汗
  • 客官,请慢!!我明天再写吧。
  • 那么,我们就先分别递归求的左边和右边的最大子数组和的值,然后考虑下和当前的跨越中点的那个最大子数组和进行比较,获取他们三个当中最大的那一个。
  • 那么如何求的跨越中点的子数组的最大值呢?
  • 跨越中点有一个特点,就是左边是以中点 k=i+j2 所在元素结尾,右边是以这个元素为开始,那么由第二种解决方案的思路,我们就可以分别从 k 开始,向左边和右边进行遍历找到最大的那个。其实这种遍历是 O(n) 的复杂度的⊙﹏⊙b汗
  • 那么我们就写下来代码看看。
int maxSubArray(vector<int>& nums) {
    int n = nums.size();
    if(n == 0)
        return 0;
    if(n == 1)
        return nums[0];
    return maxSubArray_help(nums,0,n-1);
}

int maxSubArray_help(vector<int>& nums,int begin,int end){
    if(begin == end)
        return nums[end];
    int mid = (begin + end)>>1;
    /**左边子数组的最大值子数组值*/
    int max_left = maxSubArray_help(nums,begin,mid);
    /**右边子数组的最大值子数组值*/
    int max_right = maxSubArray_help(nums,mid + 1,end);
    /**跨越中点的最大值子数组值*/
    int max_cross = maxCrossMid(nums,begin,mid,end);
    return max(max(max_left,max_right),max_cross);
}

/*maxCrossMid函数的时间复杂度实际为O(n)*/
int maxCrossMid(vector<int>& nums,int begin,int mid ,int end){
    int left_max = 0x80000001;//最小的32位整数
    int right_max = 0x80000001;
    int sum = 0;
    /*计算以mid结尾的最大的子数组和,左边子数组*/
    for(int i = mid ;i>=begin;--i){
        sum += nums[i];
        if(sum > left_max)
            left_max = sum;
    }
    sum = 0;
    /*计算以mid+1开始的最大的子数组和,右边子数组*/
    for(int i=mid+1;i<=end;++i){
        sum += nums[i];
        if(sum > right_max)
            right_max = sum;
    }
    return left_max + right_max;
}
  • 提交到Leetcode,如果还通不过,那么,你觉得我能找到工作么?黔驴技穷了都⊙﹏⊙b汗(还是参考算法导论的内容)
  • 好消息是通过了测试,坏消息是,运行的速度很慢。很慢。。
  • 我们来分析下这个算法慢在哪里,这个算法是一个分治的算法,那么我们按着分治的思想列出时间复杂度的计算表达式 T(n)=2T(n2)+O(n) ,为什么最后面一项是 O(n) ,这项就表示我们计算跨越中点的最大子数组和的时间复杂度。 maxCrossMid这个函数的最坏情况下是最大子数组就是从begin开始到end结束的和,那么begin和end最坏的情况就是0到n 所以时间复杂度是 O(n)
  • 那么这个表达式的结果是什么呢?
  • 根据主定理,我们可以知道这个解的下界是 O(nlgn) 也就是 Θ(nlgn) ,当然这个算法比 O(n2) 要快,不然也通不过测试。。
  • 那么他们怎么运行的那么快呢?有没有线性时间的算法呢?

3.线性时间的算法,思想参考算法导论的第4章的习题

  • 线性算法的思想是基于动态规划,把问题转化为一个较小的子问题。思考是这么想的,但是实际求解的过程还是从子问题逐渐到整个问题的过程。我也不知道我在说神马⊙﹏⊙b汗
  • 对于数组从左到右处理,记录到目前为止,他的意思是到你遍历的某个元素为止的已经处理过的最大子数组的,基于下面的观察,如果已知 A[ij] 的最大子数组,那么可以根据如下的性质将解扩展到为 A[ij+1] 的最大子数组: A[ij+1] 的最大子数组,要么是 A[ij] 的最大子数组,要么是某个子数组 A[mj+1]imj+1 。以 Aj+1 结尾的子数组。
  • 那么我们可以想到,如果 A[ij+1] 的最大子数组,和 A[ij] 的最大子数组一样,那很好实现,但是这只是一种情况。其实重点在 A[ij+1] 的子数组是 A[mj+1]imj+1 ,如果是这种情况怎么确定 A[mj+1] 呢?也就是求解以 Aj+1 结尾的最大子数组,按着解决方案三的思想,我们可以从 Aj+1 向左遍历,求解一个最大的子数组,但是这种很明显就提高了复杂度,对于每一个 j 你都要向左遍历,那么时间复杂度就成为 O(n2) 了⊙﹏⊙b汗
  • 其实我们忘了一个假设,那就是当你处理到 Aj+1 的时候,我们已经知道以 Ai 结尾的最大子数组,对应于算法导论中提到的记录目前为止处理过的最大子数组。那么假设 sumj=jt=mAt 记录以 Aj 结尾的最大子数组,那么可以得到

    sumj+1=t=mjAt+Aj+1Aj+1t=mjAt+Aj+1>Aj+1t=mjAt+Aj+1Aj+1

  • 这样就把以 Aj+1 结尾的最大子数组找出来了,那么到 Aj+1 为止的最大子数组(可能不是以 Aj+1 结尾),还没有找出来,这就需要我们从开始记录一个到 Aj+1 为止的最大子数组,假设为 maxj 表示到 Aj 为止的最大子数组,然后和以 Aj+1 结尾的最大子数组进行比较,取最大的那个,

    maxj+1={maxjsumj+1maxj>sumj+1maxjsumj+1

  • 这样就可以完成求解到 Aj+1 为止,最大的子数组。把过程弄明白之后,那就开始写程序。
int maxSubArray(vector<int>& nums) {
    int n = nums.size();
    if(n == 0)
        return 0;
    if(n == 1)
        return nums[0];
    vector<int> Max(n,0x80000001);
    vector<int> sum(n,0);
    sum[0] = nums[0];
    Max[0] = nums[0];
    for(int i=1;i/*以nums[i]结尾的最大子数组*/
        sum[i] = max(sum[i-1] + nums[i],nums[i]);
        /*到i为止的最大子数组*/
        Max[i] = max(sum[i],Max[i-1]);
    }
    /*返回到n-1为止的最大子数组,也就是整个数组的最大子数组*/
    return Max[n-1];
}
  • Leetcode提交通过,速度任然很慢,这是怎么一回事⊙﹏⊙b汗
  • 分析下复杂度,时间复杂度为 O(n) 只扫描一遍数组。
  • 空间复杂度为 O(2n) 因为用到了两个额外的数组Max和sum难道这个是慢的原因(有可能)
  • 那么下面的思路就是对这个进行优化。

4.解决方案三的优化

  • 我们看着方案三的代码,可以看出来,其实我们没有必要把全局的最后求解的最大值和每次以 Aj 为止的最大值分开来求,只要存放在一个变量里面就可以了,因为到 Aj 为止的最大值只使用了一次就结束了,就在和以 Aj 结尾的最大值进行比较,所以可以有下面的优化一步的代码。
  int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        if(n == 0)
            return 0;
        if(n == 1)
            return nums[0];
        vector<int> sum(n,0);
        sum[0] = nums[0];
        int max_sum = nums[0];
        for(int i=1;i/*以nums[i]结尾的最大子数组*/
            sum[i] = max(sum[i-1] + nums[i],nums[i]);
            /*到i为止的最大子数组*/
            max_sum = max(max_sum , sum[i]);
        }
        /*返回到n-1为止的最大子数组,也就是整个数组的最大子数组*/
        return max_sum;
}

5.解决方案四的进一步优化

  • 在上一步的优化当中我们可以看出来,其实以 Aj 结尾的最大子数组的值也是在求解以 Aj+1 结尾的最大子数组的时候用到一次,其他的时候并不会用到,所以我们可以把这个sum数组也优化了,具体的可以用变量 sum_cur ,表示以 Ai 结尾的最大子数组的和,然后比较 sum_cur+Aj+1 Aj+1 的大小,取最大的那个就代表到以 Aj+1 结尾的最大子数组的和。
  • 这样我们就可以写出来,网上一般会直接给出的动态规划最后的结果。
  • 当然还有其他的写法,可以主要思想就是这样。
int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        if(n == 0)
            return 0;
        if(n == 1)
            return nums[0];
        int sum_cur = nums[0];
        int max_sum = nums[0];
        for(int i=1;i/*以nums[i]结尾的最大子数组*/
            if(sum_cur < 0)
                sum_cur = nums[i];
            else 
                sum_cur += nums[i];
            /*到i为止的最大子数组*/
            if(sum_cur > max_sum)
                max_sum = sum_cur;
        }
        /*返回到n-1为止的最大子数组,也就是整个数组的最大子数组*/
        return max_sum;
}

6.总结

  • 对于一个问题首先要想到它最为直接,一般的方法,比如这个题的方案1和方案2,首先想到这些直接的算法,然后观察对这种方法进行改进。
  • 我很不赞成直接给出最后一种优化后的结果的答案,因为这个比较难于理解,至少是对我来说,如果你能直接看懂这个优化后的结果,那么可以用这种思想去做下Leetcode的Maximum Product Subarray这个题的思路和本题类似,后续的内容也会写到这个题。
  • 曾经发生过两行代码来解决这个问题的争论,确实优化之后的核心代码确实只有两行,哈哈。
  • 对于没见过的题,弄懂别人的解法是学习,能够应用之前学习到的方法解决问题是能力

7.参考内容

  • 算法导论第4章
  • Leetcode:Maximum Subarray

你可能感兴趣的:(algorithm)