- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- 元宇宙与Web3的深度融合:构建沉浸式数字体验的愿景与挑战
一、技术特征与融合基础1.元宇宙的技术架构(2025年)空间构建技术:3D建模与渲染:实时渲染引擎(如UnityHDRP)支持路径追踪光追,AI生成模型(NVIDIAGet3D)3秒生成3D场景。数字孪生:城市级建模(腾讯覆盖100+城市)、工业级精度(西门子Xcelerator达0.1mm),动态映射现实数据(如NASA火星车实时驱动虚拟环境)。交互技术:自然交互界面:手势识别(UltraLea
- 【Django备忘录】Django数据库的迁移
目录Contents一、确认信息二、生成迁移文件三、迁移数据库定义某个应用的数据模型后,就要执行数据库迁移了,具体步骤如下:一、确认信息先确认你的应用是否在项目名/setting.py的INSTALLED_APPS列表中激活,激活完成后才可使用迁移。没有激活完成会检测不到数据模型修改项,导致迁移后没有数据模型。二、生成迁移文件打开CMD,cd到你的项目的目录(注意是manage.py的同级目录),
- 略说本体论中的公理和规则的区别与联系
金井PRATHAMA
知识图谱与NLP知识图谱人工智能
本体论中的公理和规则是构建知识模型的核心逻辑工具,用于确保概念和关系的严谨性与一致性。以下是具体说明与示例:一、公理(Axioms)定义:公理是本体论中无需证明的基本断言,用于定义概念的本质属性和约束条件。它们构成领域内知识推理的基础框架。示例:属性的排他性公理:某个属性与其否定形式不能同时成立。举例:若定义“人类是哺乳动物”,则“人类是非哺乳动物”必然为假。(哲学领域常用此公理避免逻辑矛盾。)传
- 略说NLP引入公理模型的可行性
金井PRATHAMA
知识图谱与NLP自然语言处理人工智能知识图谱
在自然语言处理(NLP)的深层语义分析中,公理化体系的引入具有理论可行性,但其实际应用仍面临挑战。以下从公理模型的设计思路、关键技术要点及注意事项三个方面展开分析,结合搜索结果的多个相关技术点进行综合说明:一、公理模型在深层语义分析中的设计思路公理的定义与语义形式化公理模型需以形式化逻辑为基础,定义语义分析中的原始概念(如谓词、实体、关系)和推理规则。例如:原始概念:将语义角色(如施事者、受事者)
- 智能体架构设计的五大核心原则:构建下一代AI系统的工程基石
一休哥助手
人工智能
引言:智能体架构的范式演进人工智能领域正经历从孤立模型向自主智能体的范式转变。2025年,全球AI智能体市场规模突破200亿美元,在金融、医疗、制造等领域的渗透率超40%。然而,智能体开发仍面临协作效率低(多智能体任务重叠率达30%)、安全风险高(工具调用错误率18%)和系统僵化(需求变更迭代周期超2周)三大痛点。本文基于产业实践提炼五大核心设计原则,为构建下一代智能体系统提供架构指南。传统LLM
- 51c自动驾驶~合集10
#端到端任务说起端到端,每个从业者可能都觉得会是下一代自动驾驶量产方案绕不开的点!特斯拉率先吹响了方案更新的号角,无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。为什么需要端到端?首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对
- 51c自动驾驶~合集9
吃着火锅唱支歌
自动驾驶人工智能机器学习
#端到端1说起端到端,每个从业者可能都觉得会是下一代自动驾驶量产方案绕不开的点!特斯拉率先吹响了方案更新的号角,无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。为什么需要端到端?首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对独
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- LangChain4j:Java开发者的AI应用构建利器 | 1. 实战:构建AI对话应用
秋秋棠
人工智能java大数据
LangChain4j:Java开发者的AI应用构建利器目录LangChain4j简介LangChain4jvsSpringAI:JavaAI框架对比实战:构建AI对话应用环境搭建配置大模型核心服务实现深入ChatModel:灵活配置与应用框架选择建议LangChain4j简介LangChain4j是专为Java开发者设计的AI应用开发框架,它提供了开箱即用的API和模块化设计,让开发者能够快速构
- 真相曝光:佛萨奇Force原力元宇宙背后的故事和经济模型
口碑信息传播者
在数字化的浪潮中,佛萨奇2.0以其创新的智能合约系统,成为行业的焦点。不仅延续了经典的矩阵模式,还引入了NFT、BOOST矩阵、元宇宙等全新元素,展现出它对未来数字生态的深远布局。特别是结合NFT,佛萨奇2.0激发了无限的想象和可能。13分钟视频彻底弄明白佛萨奇Force原力元宇宙项目是什么佛萨奇2.0:智能合约的核心佛萨奇2.0的核心在于其智能合约系统。智能合约是存储在区块链上的自动执行程序,当
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- 小架构step系列17:getter-setter-toString
秋千码途
架构java开发语言
1概述在写代码的时候,有两类bean:一类是专门承载数据而无业务逻辑的bean,如DTO;另外一类是业务模型bean,其既要承载数据也要提供业务逻辑,在DDD中它们就对应于领域模型对象和值对象。这些bean里面可能要提供getter、setter、equals、hashCode、toString,甚至构造方法,这些代码写起来比较无聊,基本都是根据字段来的,属于非常机械化而无技术含量的操作,而这些操
- SBERT、CoSENT和BETR以及transformers的区别和联系
panshengnan
NLPnlptransformer
SBERT、CoSENT、BETR和Transformers的区别和联系这几个模型(SBERT、CoSENT、BETR)和框架(Transformers)都是围绕自然语言处理(NLP)的句子嵌入和语义理解任务展开的。它们的联系主要在于基于Transformer架构,并针对特定任务做了优化;区别则在于目标任务、优化策略、训练方法和适用场景等方面。1.联系基于Transformer架构:它们的核心编码
- 大模型在2型糖尿病性酮症预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能python深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、2型糖尿病性酮症相关理论基础2.12型糖尿病性酮症概述2.1.1定义与发病机制2.1.2临床表现与危害2.1.3诊断标准与鉴别诊断2.2大模型技术原理及在医疗领域的应用潜力2.2.1大模型的基本原理和特点2.2.2在医疗领域的应用现状和优势三、大模型在2型糖尿病性酮症术前风险预测的应用3.1数据收集与预处理3.1.1数据来源3.1.2数据清
- 2025年最流行跑分最高的图片理解大模型调研报告
2025年最流行跑分最高的图片理解大模型调研报告引言当前,图片理解大模型正处于快速演进阶段,其技术发展呈现多维度深化与融合的特征。从技术演进方向来看,多模态融合已成为核心趋势之一,文本、图像、视频等不同模态的交互与协同能力显著提升。大型视觉-语言模型(LVLMs)作为人工智能领域的重要突破,标志着多模态理解与交互进入变革性发展阶段,尽管当前模型在各类任务中表现出色,但在细粒度视觉任务等基础能力层面
- 自平衡摩托车控制系统设计:Python实现方案
神经网络15044
仿真模型算法机器学习python开发语言
自平衡摩托车控制系统设计:Python实现方案摘要本文针对5CCE2MCT机电一体化补考项目要求,提出了一种基于Python的自平衡摩托车控制系统完整实现方案。该系统结合PID控制、状态空间方法和数字信号处理技术,实现了稳定的平衡与运动控制。我们从数学模型建立到硬件测试进行了完整展示,提供了可替代MATLAB/Simulink方案的可行解决方案。该实现方案在保持与参考Arduino工程套件相当性能
- 入门大模型神器:开源项目Happy LLM保姆级教程!
Happy-LLMHappy-LLM——从零开始的大语言模型原理与实践教程。本项目是一个系统性的LLM学习教程,将从NLP的基本研究方法出发,根据LLM的思路及原理逐层深入,依次为读者剖析LLM的架构基础和训练过程。同时,我们会结合目前LLM领域最主流的代码框架,演练如何亲手搭建、训练一个LLM,期以实现授之以鱼,更授之以渔。希望大家能从这本书开始走入LLM的浩瀚世界,探索LLM的无尽可能。特点•
- AI算力网络中的5大网络安全威胁及应对策略
AI天才研究院
AgenticAI实战计算AI人工智能与大数据网络人工智能web安全ai
AI算力网络中的5大网络安全威胁及应对策略关键词:AI算力网络、网络安全威胁、数据隐私、模型安全、可信计算摘要:随着AI技术与算力网络的深度融合,AI算力网络已成为智能社会的“数字引擎”。但这一新型基础设施面临着比传统网络更复杂的安全挑战。本文将用“快递网”“做菜”等生活化类比,拆解AI算力网络中最常见的5大安全威胁,并结合前沿技术给出可落地的应对策略,帮助读者理解如何为AI算力网络构建“安全防护
- 入门
勤学奋进小郎君
了解机器学习标签需要通过机器学习模型判断出的结果特征机器学习模型进行判断的条件(可以是很多的变量)模型机器学习判断的工具降低损失线性回归y=mx+b其中:y指的是温度(以摄氏度表示),即我们试图预测的值。m指的是直线的斜率。x指的是每分钟的鸣叫声次数,即输入特征的值。b指的是y轴截距。2018-10-31_155803.png但是这样会对一些样本有误差,而我们的目的就是得到将误差降到最低的模型降低
- AI交互新范式:MCP(模型上下文协议)场景化应用与科普,收藏这一篇就够了!!
AI大模型-bugyinyin
人工智能交互microsoftAI大模型语言模型MCPAgent
前言当AI大模型浪潮席卷而来,我们惊喜于其强大的语言理解和生成能力,却也常常囿于传统交互方式的低效与割裂。如何让AI真正融入我们的工作流,高效地与各类工具和服务协同?模型上下文协议(ModelContextProtocol,MCP)的诞生,正是为了打破这一瓶颈,构建AI交互的新范式。本文将深入浅出地为您解读MCP,揭示其场景化应用,并提供一份全面的科普指南,带您领略MCP的魅力与潜力。一、MCP:
- 货币、权力与人:全球货币与金融体系的民本主义政治经济学
song2692005
主要探讨了当前全球货币体系的构造、特点及其缺陷,并对与之伴随的美式全球化的兴衰,提供了独到的理论解释。此外,本书分别从政治和人口角度探讨了利率曲线的短段和远端定价机理,并对货币国际化和汇率波动提出了系统的政治经济学解释。货币份额幂律、债务定价币种、人口春秋比、汇率定价机理……第一章议题与方法介绍了中国民主主义与国外的不同,历史传承等。军、民、官(官僚阶级)之间的三角博弈。西式民主以社会集团的权益为
- 离线部署视觉模型Qwen2.5-VL方案【企业应用级】
LensonYuan
机器视觉自然语言处理qwenvl视觉模型大模型部署qwen2.5qwen2.5环境qwen2.5-vl镜像包
离线多卡部署视觉模型Qwen2.5-VL企业级服务方案一、背景公司网络是有严格限制,所有涉及境外服务器的网站都无法访问,包括docker等镜像源。本教程,是在提前下载或构建好资源,通过上传到服务器后,做离线部署。二、参考环境大模型服务发布工具:VLLM=0.7.2。大模型版本:qwen2.5-vl-7b,其他版本也可。python版本:python==3.12。环境可选:docker或直接pyth
- 【算法训练营Day11】二叉树part1
十八岁讨厌编程
算法训练营算法
文章目录理论基础二叉树的递归遍历前序遍历中序遍历后序遍历总结二叉树的层序遍历基础层序遍历二叉树的右视图理论基础二叉树在结构上的两个常用类型:满二叉树完全二叉树在功能应用上的比较常用的有:二叉搜索树:节点有权值、遵循”左小右大“平衡二叉搜索树(AVL树):在二叉树的基础上增添了一个特性,左右子树高度差不超过1二叉树的存储方式:顺序存储:使用数组,在内存中连续分布链式存储:使用指针,在内存中离散分布二
- 【算法训练营Day13】二叉树part3
十八岁讨厌编程
算法训练营算法
文章目录平衡二叉树二叉树的所有路径左叶子之和完全二叉树的节点个数平衡二叉树题目链接:110.平衡二叉树平衡二叉树的定义:该二叉树的所有节点的左右子树高度差不大于1解题逻辑:这个题和我们前一篇文章说的二叉树的高度是有关的,那么我们是否可以考虑复用求二叉树高度的代码?一个最主要的问题就是求高度的方法返回值是int类型的,而我们判断二叉树是否平衡肯定是想返回boolean,那么我们可以考虑使用-1当作信
- 目标检测-YOLOv5
wydxry
深度学习目标检测YOLO人工智能深度学习
YOLOv5介绍YOLOv5是YOLO系列的第五个版本,由Ultralytics团队发布。虽然YOLOv5并非JosephRedmon原团队发布,但它在YOLOv4的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于YOLOv4,YOLOv5对于代码框架的重构、推理速度的提升,以及模型的轻量化等方
- 模型上下文协议(MCP)详解
Edward.W
计算机基础工具pythonpython网络协议jsgo
MCP(ModelContextProtocol)是一种专门为AI模型交互设计的标准化协议,它定义了模型与客户端之间上下文管理的通用规范。以下是MCP的全面介绍:一、MCP协议概述MCP(ModelContextProtocol)是一种轻量级、语言无关的通信协议,旨在解决AI模型交互中的上下文管理问题。它提供了一套标准化的方法来创建、维护和销毁交互上下文,特别适合需要状态保持的AI应用场景。核心设
- 算法训练营Day12 二叉树part01
一、二叉树的递归遍历每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!确定递归函数的参数和返回值:确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数,并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。确定终止条件:写完了递归算法,运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如
- django parler 使用教程
1.什么是DjangoParler?DjangoParler是一个强大的Django插件,用于实现多语言模型字段。它允许你在Django模型中定义可翻译的字段,使得每个语言版本的数据能够独立存储和管理。2.安装与配置首先,使用pip安装DjangoParler:pipinstalldjango-parler然后,在你的Django项目的settings.py中添加parler到INSTALLED_
- SFT:大型语言模型专业化定制的核心技术体系——原理、创新与应用全景
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理深度学习机器学习微调SFT
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!以下基于权威期刊、会议论文及技术报告,对监督微调(SupervisedFine-Tuning,SFT)的技术框架、创新方法与实际应用进行系统梳理:一、核心定义与技术原理基本概念SFT是在预训练语言模型(如GPT、BERT)基础上,利用标注数据集对模型进
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓