[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)

文章目录

  • 1. 引言
    • 1. 论文获取
    • 2. 论文解读
      • 1. 学习目标
      • 2. 数据收集
      • 3. 网络模型
      • 4. 训练神经网络
      • 5. 使用CNN实现自动驾驶
  • 2. 实验环境
    • 1. 物理环境
    • 2. 系统环境
    • 3. 软件环境
    • 4. 模拟环境
      • 1. 下载
      • 2. 启动
      • 3. 模拟器介绍
        • 1. 获取数据
        • 2. 数据结构
  • 3. 构建网络
    • 1. 网络结构
    • 2.图像预处理
      • 1. 图像数据正规化
      • 2. 图像切割
      • 3. 图像亮度调整
      • 4. 图像水平翻转
      • 5. 利用左侧的摄像头捕捉的画面
    • 3. 训练时处理
      • 1. dropout
      • 2. 随机丢弃方向角为0的样本
    • 4. 整体代码
    • 5 训练结果
  • 4. 总结

1. 引言

1. 论文获取

pdf地址

2. 论文解读

1. 学习目标

根据车载摄像头的画面,自动判断如何转方向,使用端到端(end-to-end)的深度学习
端到端的意思是,不用手动提取图像的特征值,包括中间线、边界线、方向等,直接学到决策方法。

2. 数据收集

NVIDIA整了个CAN bus来收集数据,并存储在SSD中,具体请见原文

3. 网络模型

[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第1张图片

4. 训练神经网络

[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第2张图片

5. 使用CNN实现自动驾驶

[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第3张图片Batch Normalization 各层之间进行正则化,可以加快拟合

2. 实验环境

1. 物理环境

我的机器是Intel I7 8750H, NVIDA GeForce GTX 1060

2. 系统环境

我选用的是Ubuntu18.04,python3.6, tensorflow-gpu 1.8.0

3. 软件环境

查看我的配置

4. 模拟环境

!有车有矿的同学请忽略这一条
讲师给的是一个叫做“beta_simulator_linux”的压缩包,我去研究了一下,发现是一个基于Unity开发的专门用于学生学习DL自动驾驶的软件。GitHub地址如下:https://github.com/udacity/self-driving-car-sim

1. 下载

从github上下载下来,双击即可运行。

2. 启动

  1. cd到beta_simulator_linux文件夹下
  2. 修改文件权限 :chmod 777 beta_simulator.x86_64
  3. 运行:./beta_simulator.x86_64
  4. 选择游戏配置[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第4张图片
  5. 开始玩游戏(学习)[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第5张图片

3. 模拟器介绍

1. 获取数据

使用游戏中的RECORD按钮,记录屏幕和操作
然后我们可以看见生成了一个文件一个文件夹,文件夹中是所有的图片。
在这里插入图片描述
[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第6张图片

2. 数据结构

在文件中我们看一下他的结构

  1. 图片命名结构:摄像头方向_年_月_日_时_分_秒_毫秒.jpg
  2. 图片像素:320*160
  3. csv文件格式:left文件路径, right文件路径, 转角弧度, 油门度, 刹车度, 车速
    [2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第7张图片

3. 构建网络

1. 网络结构

[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第8张图片

2.图像预处理

用于增强图像表现力,防止网络过拟合

1. 图像数据正规化

X = X / 255 − 0.5 X = X/255 - 0.5 X=X/2550.5将图像的范围从[0, 255]变到 [-0.5, 0.5],减少了输入和输出(向左向右用数值表示)的差异
Batch Normalization 可以更快训练,防止过拟合

cv2.resize(img[80:140, 0:320], (shape[0], shape[1]))/255.-0.5

2. 图像切割

从底向上切20pixel,将车头部分去掉
从上向下切20pixel,将远方地平线以上的区域去掉
切割后取图像的[80, 260]pixel

3. 图像亮度调整

方法:使用opencv调整亮度
将图像从RGB转换为HSV图像,保持HS保持不变,将曝光度V乘以[0.1, 1]中的一个随机数,再将HSV转换回RGB

def random_brightness(img, degree):
    '''
    图像增强,调整强度于0.1~1之间
    :param img:输入图像
    :param degree:转动角度
    :return:
    '''
    hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
    # 调整亮度V: alpha*V
    alpha = np.random.uniform(low=0.1, high=1.0, size=None)
    v = hsv[:, :, 2]  # 取出hsv的第三个通道数据
    v = v * alpha
    hsv[:, :, 2] = v.astype('uint8')  # 图像每个点是整数,转换为uint8
    # 转回为rgb图像
    rgb = cv2.cvtColor(hsv.astype('uint8'), cv2.COLOR_HSV2RGB)

    return rgb, degree

4. 图像水平翻转

用于使得左转和右转的数据同样多

def horizontal_flip(img, degree):
    '''
    按照50%概率水平翻转图像
    :param img: 图像
    :param degree: 输入推向的转动角度
    :return:
    '''
    choice = np.random.choice([0, 1])
    if choice == 1:
        img, degree = cv2.flip(img, 1), -degree
    return img, degree

5. 利用左侧的摄像头捕捉的画面

推导公式如下[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第9张图片

def left_right_random_swap(img_address, degree, degree_corr=1.0/4):
    '''
    随机从左中右三幅图中选择一张,并转动相应的角度
    :param img_address: 中间图像存储的路径
    :param degree:中间图像转动角度
    :param degree_corr:转动角度调整值
    :return:
    '''
    swap = np.random.choice(['L', 'R', 'C'])

    if swap == 'L':
        img_address = img_address.replace('center', 'left')
        corrected_label = np.arctan(math.tan(degree) + degree_corr)
        return img_address, corrected_label
    elif swap == 'R':
        img_address = img_address.replace('center', 'right')
        corrected_label = np.arctan(math.tan(degree) - degree_corr)
        return img_address, corrected_label
    else:
        return img_address, degree

3. 训练时处理

用于防止过拟合

1. dropout

model.add(Dropout(0.25))

2. 随机丢弃方向角为0的样本

def discard_zero_steering(degrees, rate):
    '''
    从角度为零的index中所及选择部分index返回
    :param degrees: 输入的角度值
    :param rate:丢弃率
    :return:
    '''
    steering_zero_idx = np.where(degrees==0)  # 选中那些degree为零的index
    steering_zero_idx = steering_zero_idx[0]
    size_del = int(len(steering_zero_idx)*rate)

    return np.random.choice(steering_zero_idx, size=size_del, replace=False)
rand_zero_idx = discard_zero_steering(y, rate=discard_rate)
        new_x = np.delete(x, rand_zero_idx, axis=0)
        new_y = np.delete(y, rand_zero_idx, axis=0)

4. 整体代码

分为训练代码和测试代码,测试代码通过socket与模拟器通信

# train.py 训练
import pickle
import numpy as np
from keras.optimizers import SGD, Adam
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten, PReLU
from keras.models import Sequential, Model
from keras.regularizers import l2
from keras import callbacks
import os.path
import csv
import cv2
import glob
import math
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import json
from matplotlib import pyplot

SEED = 13

def horizontal_flip(img, degree):
    '''
    按照50%概率水平翻转图像
    :param img: 图像
    :param degree: 输入推向的转动角度
    :return:
    '''
    choice = np.random.choice([0, 1])
    if choice == 1:
        img, degree = cv2.flip(img, 1), -degree
    return img, degree


def random_brightness(img, degree):
    '''
    图像增强,调整强度于0.1~1之间
    :param img:输入图像
    :param degree:转动角度
    :return:
    '''
    hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
    # 调整亮度V: alpha*V
    alpha = np.random.uniform(low=0.1, high=1.0, size=None)
    v = hsv[:, :, 2]  # 取出hsv的第三个通道数据
    v = v * alpha
    hsv[:, :, 2] = v.astype('uint8')  # 图像每个点是整数,转换为uint8
    # 转回为rgb图像
    rgb = cv2.cvtColor(hsv.astype('uint8'), cv2.COLOR_HSV2RGB)

    return rgb, degree


def left_right_random_swap(img_address, degree, degree_corr=1.0/4):
    '''
    随机从左中右三幅图中选择一张,并转动相应的角度
    :param img_address: 中间图像存储的路径
    :param degree:中间图像转动角度
    :param degree_corr:转动角度调整值
    :return:
    '''
    swap = np.random.choice(['L', 'R', 'C'])

    if swap == 'L':
        img_address = img_address.replace('center', 'left')
        corrected_label = np.arctan(math.tan(degree) + degree_corr)
        return img_address, corrected_label
    elif swap == 'R':
        img_address = img_address.replace('center', 'right')
        corrected_label = np.arctan(math.tan(degree) - degree_corr)
        return img_address, corrected_label
    else:
        return img_address, degree


def discard_zero_steering(degrees, rate):
    '''
    从角度为零的index中所及选择部分index返回
    :param degrees: 输入的角度值
    :param rate:丢弃率
    :return:
    '''
    steering_zero_idx = np.where(degrees==0)  # 选中那些degree为零的index
    steering_zero_idx = steering_zero_idx[0]
    size_del = int(len(steering_zero_idx)*rate)

    return np.random.choice(steering_zero_idx, size=size_del, replace=False)


def get_model(shape):
    '''
    预测方向盘角度:以图像作为输出,预测方向盘转动叫
    :param shape:输入图像的储存,如(128, 128, 3)3 通道
    :return model: 生成模型
    '''

    model = Sequential()

    model.add(Conv2D(8, (5, 5), strides=(1, 1), padding="valid", activation='relu', input_shape=shape))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(8, (5, 5), strides=(1, 1), padding="valid", activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(16, (4, 4), strides=(1, 1), padding="valid", activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(16, (5, 5), strides=(1, 1), padding="valid", activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())

    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(50, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(10, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(1, activation='linear'))  # 只需要输出一个方向盘的角度,其角度为小数数值,故用linear和一个节点的全连接层

    # sgd = SGD(lr=0.000001)
    # model.compile(optimizer=sgd, loss="mean_squared_error")  # 拟合问题,使用均方误差层。
    adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
    model.compile(optimizer=adam, loss='mean_squared_error')
    return model


def image_transformation(img_address, degree, data_dir):
    '''
    读入图像
    :param img_address:图像地址
    :param label:图像标签
    :param data_dir:文件夹地址
    :return:
    '''
    img_address, degree = left_right_random_swap(img_address, degree)  # 三个视角随机来一个
    img = cv2.imread(img_address)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # opencv->numpy(BGR-
    img, degree = random_brightness(img, degree)  # 调整亮度
    img, degree = horizontal_flip(img, degree)  # 水平翻转
    return img, degree


def batch_generator(x, y, batch_size, shape, training=True,
                    data_dir="data/", monitor=True,
                    yieldXY=True, discard_rate=0.95):
    '''
    产生批处理数据的generator
    :param x: 文件路径list
    :param y: 方向盘角度
    :param batch_size: 批处理大小
    :param shape: 输入图像的尺寸(长×宽×通道)
    :param training: 
                True —— 产生训练数据
                Flase —— 产生测试数据
    :param data_dir: 数据目录,包含一个IMG文件夹
    :param monitor: 是否保存一个batch的样本为'X_batch_sample.npy' 和 'y_bag.npy'
    :param yieldXY: 
                True —— 返回(X, Y)
                False —— 返回X
    :return: 
    '''

    # 训练时洗牌
    if training:
        y_bag = []
        x, y = shuffle(x, y)
        rand_zero_idx = discard_zero_steering(y, rate=discard_rate)
        new_x = np.delete(x, rand_zero_idx, axis=0)
        new_y = np.delete(y, rand_zero_idx, axis=0)
    else:
        new_x = x
        new_y = y

    offset = 0  # 计数<=batchsize
    while True:
        X = np.empty((batch_size, *shape))
        Y = np.empty((batch_size, 1))

        for example in range(batch_size):
            img_address, img_steering = new_x[example + offset], new_y[example + offset]

            if training:
                img, img_steering = image_transformation(img_address, img_steering, data_dir)
            else:
                img = cv2.imread((data_dir + img_address))
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 只保留中间的80*240并正规化

            X[example, :, :, :] = cv2.resize(img[80:140, 0:320], (shape[0], shape[1]))/255.-0.5

            Y[example] = img_steering
            if training:
                y_bag.append(img_steering)

            '''数据全部读完,从头开始'''
            if (example + 1) + offset >= len(new_y) - 1:
                x, y = shuffle(x, y)
                rand_zero_idx = discard_zero_steering(y, rate=discard_rate)
                new_x = x
                new_y = y
                new_x = np.delete(new_x, rand_zero_idx, axis=0)
                new_y = np.delete(new_y, rand_zero_idx, axis=0)
                offset = 0

        if yieldXY:
            yield (X, Y)
        else:
            yield X

        offset = offset + batch_size
        if training:
            np.save('y_bag.npy', np.array(y_bag))
            np.save('Xbatch_sample.npy', X)


if __name__ == '__main__':
    #  读入csv
    data_path = 'data/'
    with open(data_path + 'driving_log.csv', 'r') as csvfile:
        file_reader = csv.reader(csvfile, delimiter=',')
        log = []
        for row in file_reader:
            log.append(row)

    log = np.array(log)
    # 去除第一行,表格头
    log = log[1:, :]

    # 判断图像文件数量是否等于csv文件中记录的数量
    ls_imgs = glob.glob(data_path + 'IMG/*.jpg')
    print(len(ls_imgs),len(log)*3)
    assert len(ls_imgs)-3 == (len(log) * 3), "输入图像与图像数据文件不匹配"

    # 使用20%数据作为validation
    validatation_ratio = 0.2
    shape = (128, 128, 3)
    batch_size = 64
    nb_epoch = 1000

    x_ = log[:, 0]
    y_ = log[:, 3].astype(float)
    x_, y_ = shuffle(x_, y_)
    X_train, X_val, y_train, y_val = train_test_split(x_, y_, test_size=validatation_ratio, random_state=SEED)

    print('batch size:{}'.format(batch_size))
    print('Train set size:{} | Validation set size: {}'.format(len(X_train), len(X_val)))

    samples_per_epoch = batch_size
    # 使得validation数据量大小为batch_size的整数倍
    nb_val_samples = len(y_val) - len(y_val) % batch_size
    model = get_model(shape)
    print(model.summary())

    # 根据validation loss 保存最优模型
    save_best = callbacks.ModelCheckpoint('best_model.h5',
                                          monitor='val_loss',
                                          verbose=1,
                                          save_best_only=True,
                                          mode='min')

    # 如训练持续没有validation loss提升,则题前结束训练
    early_stop = callbacks.EarlyStopping(monitor='val_loss',
                                         min_delta=0,
                                         patience=30,
                                         verbose=0,
                                         mode='auto')
    # callbacks_list = [early_stop, save_best]
    callbacks_list = [early_stop, save_best]

    # 使用训练数据训练
    history = model.fit_generator(batch_generator(X_train, y_train, batch_size, shape, training=True),
                                  steps_per_epoch=samples_per_epoch,
                                  validation_steps=nb_val_samples // batch_size,
                                  validation_data=batch_generator(X_val, y_val, batch_size, shape, training=True,
                                                                  monitor=False),
                                  epochs=nb_epoch,
                                  verbose=1,
                                  callbacks=callbacks_list)

    with open('./trainHistoryDict.p', 'wb') as file_pi:
        pickle.dump(history.history, file_pi)

    pyplot.plot(history.history['loss'])
    pyplot.plot(history.history['val_loss'])
    pyplot.title("model train VS validation loss")
    pyplot.ylabel('loss')
    pyplot.xlabel('epoch')
    pyplot.legend(['train', 'validation'], loc='upper right')
    pyplot.savefig('train_val_loss.jpg')

    # 保存模型
    with open('model.json', 'w') as f:
        f.write(model.to_json())
    model.save('model.h5')
    print('Done!')
# predict.py 测试端
import base64
import json
import numpy as np

import socketio
import eventlet
import eventlet.wsgi
import time

from PIL import Image
from PIL import ImageOps
from flask import Flask, render_template  # Flask是一个网络框架,方便写网络程序
from io import BytesIO

from keras.models import load_model
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array
import cv2

sio = socketio.Server()  # 服务器
app = Flask(__name__)  # 创建网络框架
model = None

# socket接收到数据,调用telemetry方法
@sio.on('telemetry')
def telemetry(sid, data):
    # 当前车的方向盘转动角
    steering_angle = data["steering_angle"]
    # 当前油门
    throttle = data["throttle"]
    # 当前车速
    speed = data["speed"]
    # 车中间位置的摄像头捕捉的画面
    imgString = data["image"]
    image = Image.open(BytesIO(base64.b64decode(imgString)))
    image_array = np.asarray(image)
    # BGR->RGB
    image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)

    # 缩放图像到网络输入要求的大小
    image_array = image_array[80:140, 0: 320]
    # 正规化图像
    image_array = cv2.resize(image_array, (128, 128)) / 255. - 0.5
    # 图像从3维增加一个批处理维度
    transformed_image_array = image_array[None, :, :, :]

    # 预测角度
    steering_angle = float(model.predict(transformed_image_array, batch_size=1))

    # 设置油门常数为1
    throttle = 1

    # 输出预测的角度和油门到命令行
    print(steering_angle, throttle)

    # 发送方向盘转动角和油门给模拟器
    send_control(steering_angle, throttle)


# 建立链接
@sio.on('connect')
def connect(sid, environ):
    print("connecting finished!", sid)
    send_control(0, 0)


def send_control(steering_angle, throttle):
    sio.emit("steer", data={
        'steering_angle': steering_angle.__str__(),
        'throttle': throttle.__str__()
    }, skip_sid=True)


if __name__ == '__main__':
    model = load_model('model.h5')

    # 将Flask应用绑定到中间件上去
    app = socketio.Middleware(sio, app)

    # 启动eventlet WSGI 服务器, 监听4567端口
    eventlet.wsgi.server(eventlet.listen(('', 4567)), app)

5 训练结果

[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第10张图片可以看到收敛了
最后,自动驾驶小游戏的成果演示视频我放在了B站上:

自动驾驶小玩具(课程作业演示)udacity self driving car nanodegree program


视屏地址

4. 总结

通过这一次的训练,熟练地使用了keras搭建神经网络,运用了多重图像增强的方法。复现了Nvidia的16年自动驾驶的一篇论文。在训练的时候,有过过拟合的情况,添加了dropout之后可以有效抑制过拟合。[2019计算机视觉]——贪心学院 学习笔记 【大项目】自动驾驶之方向盘转动项目案例(端到端)_第11张图片

你可能感兴趣的:(计算机视觉)