2019/11/2的学习总结

八进制:Octal,缩写OCT或O,一种以8为基数的计数法,采用0,1,2,3,4,5,6,7八个数字,逢八进1。一些编程语言中常常以数字0开始表明该数字是八进制。
十六进制(英文名称:Hexadecimal):在数学中是一种逢16进1的进位制。一般用数字0到9和字母A到F(或af)表示,其中:AF表示10~15,这些称作十六进制数字。是计算机中数据的一种表示方法。同我们日常生活中的表示法不一样。eg:16进制的20表示成10进制就是:2×16¹+0×16º=32
十进制数可以转换成十六进制数的方法是:十进制数的整数部分"除以16取余",十进制数的小数部分"乘16取整",进行转换。比如说十进制的0.1转换成八进制为0.0631463146314631。就是0.1乘以8=0.8,不足1不取整,0.8乘以8=6.4,取整数6, 0.4乘以8=3.2,取整数3,依次下算。
八进制化为十进制:
例:将八进制数12.6转换成十进制数
(12.6)8 = 1×8^1 + 2×8^0 + 6×8^-1 = (10.75)10
八进制化为二进制:
规则:按照顺序,每1位八进制数改写成等值的3位二进制数,次序不变。
例: (17.36)8 = (001 111 .011 110)2 = (1111.01111)2八进制化为十进制:
例:将八进制数12.6转换成十进制数
(12.6)8 = 1×8^1 + 2×8^0 + 6×8^-1 = (10.75)10
八进制化为二进制:
规则:按照顺序,每1位八进制数改写成等值的3位二进制数,次序不变。
例: (17.36)8 = (001 111 .011 110)2 = (1111.01111)2
八进制化为十六进制
先将八进制化为二进制,再将二进制化为十六进制。
例:(712)8 = (1110 0101 0)2 = (1CA)16
转换为八进制
二进制化为八进制:
整数部份从最低有效位开始,以3位一组,最高有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的整数。
小数部份从最高有效位开始,以3位一组,最低有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的小数。
例:(11001111.01111)2 = (011 001 111.011 110)2 = (317.36)8
十六进制化为八进制:
先用1化4方法,将十六进制化为二进制;再用3并1方法,将二进制化为8制。
例: (1CA)16 = (111001010)2 = (712)8
说明:小数点前的高位零和小数点后的低位零可以去除。
十进制化八进制
方法1:采用除8取余法。
例:将十进制数115转化为八进制数
8| 115…… 3
8| 14 …… 6
8| 1 …… 1
结果:(115)10 = (163)8
方法2:先采用十进制化二进制的方法,再将二进制数化为八进制数
例:(115)10 = (1110011)2 = (163)8
进制转换的理论:
1、 二进制数、十六进制数转换为十进制数:
用按权展开法把一个任意R 进制数a n a n-1 …a1a 0 . a -1 a -2…a -m转换成十进制数,其十进制数值为每一位数字与其位权之积的和。
a n ×Rn+ a n-1×R n-1
+…+ a 1×R 1 + a 0×R 0 + a -1 ×R -1+ a -2×R -2+ …+ a -m ×R -m
2、 十进制转化成R 进制十进制数轮换成R 进制数要分两个部分:
整数部分要除R 取余数,直到商为0,得到的余数即为二进数各位的数码,余数从右到左排列(反序排 列) 。小数部分要乘R 取整数,得到的整数即为二进数各位的数码,整数从左到右排列(顺序排列) 。
3、十六进制转化成二进制:每一位十六进制数对应二进制的四位,逐位展开。
4、 二进制转化成十六进制:将二进制数从小数点开始分别向左(对二进制整数)或向右(对二进制小数)每四位组成一组,不足四位补零。

你可能感兴趣的:(2019/11/2的学习总结)