va_list是一个宏,由va_start和va_end界定,一时难说清,详细见《Windows32程序设计》Unicode部分
va_list structure
Used to hold information needed by va_arg and va_end macros. Called function declares variable of type va_list that can be passed as argument to another function.
---STDARG.H
#ifndef _VA_LIST_DEFINED
#ifdef _M_ALPHA
typedef struct {
char *a0; /* pointer to first homed integer argument */
int offset; /* byte offset of next parameter */
} va_list;
#else
typedef char *va_list;
#endif
#define _VA_LIST_DEFINED
#endif
#if defined(_M_IX86)
/*
* define a macro to compute the size of a type, variable or expression,
* rounded up to the nearest multiple of sizeof(int). This number is its
* size as function argument (Intel architecture). Note that the macro
* depends on sizeof(int) being a power of 2!
*/
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )
#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0
#elif defined(_M_MRX000) /* _MIPS_ */
#define va_dcl int va_alist;
#define va_start(list) list = (char *) &va_alist
#define va_end(list)
#define va_arg(list, mode) ((mode *)(list =/
(char *) ((((int)list + (__builtin_alignof(mode)<=4?3:7)) &/
(__builtin_alignof(mode)<=4?-4:-8))+sizeof(mode))))[-1]
/* +++++++++++++++++++++++++++++++++++++++++++
Because of parameter passing conventions in C:
use mode=int for char, and short types
use mode=double for float types
use a pointer for array types
+++++++++++++++++++++++++++++++++++++++++++ */
#elif defined(_M_ALPHA)
/*
* The Alpha compiler supports two builtin functions that are used to
* implement stdarg/varargs. The __builtin_va_start function is used
* by va_start to initialize the data structure that locates the next
* argument. The __builtin_isfloat function is used by va_arg to pick
* which part of the home area a given register argument is stored in.
* The home area is where up to six integer and/or six floating point
* register arguments are stored down (so they can also be referenced
* by a pointer like any arguments passed on the stack).
*/
extern void * __builtin_va_start(va_list, ...);
#define va_dcl long va_alist;
#define va_start(list) __builtin_va_start(list, va_alist, 0)
#define va_end(list)
#define va_arg(list, mode) /
( *( ((list).offset += ((int)sizeof(mode) + 7) & -8) , /
(mode *)((list).a0 + (list).offset - /
((__builtin_isfloat(mode) && (list).offset <= (6 * 8)) ? /
(6 * 8) + 8 : ((int)sizeof(mode) + 7) & -8) /
) /
) /
)
#elif defined(_M_PPC)
/*
* define a macro to compute the size of a type, variable or expression,
* rounded up to the nearest multiple of sizeof(int). This number is its
* size as function argument (PPC architecture). Note that the macro
* depends on sizeof(int) being a power of 2!
*/
/* this is for LITTLE-ENDIAN PowerPC */
/* bytes that a type occupies in the argument list */
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )
/* return 'ap' adjusted for type 't' in arglist */
#define _ALIGNIT(ap,t) /
((((int)(ap))+(sizeof(t)<8?3:7)) & (sizeof(t)<8?~3:~7))
#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap = (char *) (_ALIGNIT(ap, t) + _INTSIZEOF(t))) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0
#else
/* A guess at the proper definitions for other platforms */
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )
#define va_dcl va_list va_alist;
#define va_start(ap) ap = (va_list)&va_alist
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
#define va_end(ap) ap = (va_list)0
#endif
#ifdef __cplusplus
}
#endif
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#endif /* _INC_VARARGS */
在C/C++函数中使用可变参数
作者转自: http://foggy-elves.blog.sohu.com/ 下面介绍在C/C++里面使用的可变参数函数。 先说明可变参数是什么,先回顾一下C++里面的函数重载,如果重复给出如下声明: int func(); int func(int); int func(float); int func(int, int); ... 这样在调用相同的函数名 func 的时候,编译器会自动识别入参列表的格式,从而调用相对应的函数体。 但这样的方法毕竟有限,试想一下我们假如想定义一个函数,我们在调用之前(在运行期之前)根本不知道我到底要调用几个参数,并且不知道这些参数是个什么类型,例如我们想定义一个函数: int max(int n, ...); 用来返回一串随意长度输入参数的最大值,例如调用 max(3, 10, 20, 30)的时候,可以返回(n=3)个数 10,20,30 的最大值30。 并且还可以接受任意个参数的输入,例如: max(6, 20, 40, 10, 50, 30, 40)也应该是被接受的,返回最大值50。 这怎么达到呢? 其实这样的例子我们肯定见过,最典型的就是 printf 函数,可以看 printf 函数的原形: int printf(char*, ...); 它接受一个格式字符串,并且后面跟随任意指定的参数,根据实际需要而确定入参的个数。 实际上它的实现要依赖于一个标准 C 库 这实际上是一组初始化和调用可变参数的宏,下面先介绍一下可变参数表的调用形式以及原理: 首先是参数的内存存放格式:参数存放在内存的堆栈段中,在执行函数的时候,从最后一个开始入栈。因此栈底高地址,栈顶低地址,举个例子如下: void func(int x, float y, char z); 那么,调用函数的时候,实参 char z 先进栈,然后是 float y,最后是 int x,因此在内存中变量的存放次序是 x->y->z,因此,从理论上说,我们只要探测到任意一个变量的地址,并且知道其他变量的类型,通过指针移位运算,则总可以顺藤摸瓜找到其他的输入变量。 然后是可变入参表格式,省略的参数用 ... 代替,但必须注意: 1. 只能有一个 ... 并且它必须是最后一个参数; 2. 不要只用一个 ... 作为所有的参数,因为从后面可以知道,这样你无法确定入参表的地址。 举个例子,声明函数如下: void func(int x, int y, ...); 然后调用:func(3, 5, 'c', 2.1f, 6); 于是在调用参数的时候,编译器则不会检查实际输入的是什么参数,只管把所有参数按照上面描述的方法,变成实参堆放在内存中,在本例中,内存中依次存放 x=3, y=5, 'c', 2.1f, 6 但是有一个需要注意的地方,这些东西只是紧挨着堆放在内存中,于是想要正确调用这些参数,必须知道他们确切的类型,并且我们也关心这个参数表实际的长度,然而不幸的是,这些我们无从得知。因此,这个解决办法决不是高明的,从某种程度上说,这甚至是一个严重的漏洞。因此,C++ 很不提倡去使用它。 不过缺点归缺点,万不得已的时候我们还是得用,但是我们对里面输入变量的时候,应该对入参的类型有一个清醒的认识,否则这样的操作是很危险的。 下面是 typedef char* va_list; void va_start ( va_list ap, prev_param ); /* ANSI version */ type va_arg ( va_list ap, type ); void va_end ( va_list ap ); 其中,va_list 是一个字符指针,可以理解为指向当前参数的一个指针,取参必须通过这个指针进行。 例如开始的例子 int max(int n, ...); 其函数内部应该如此实现: int max(int n, ...) { // 定参 n 表示后面变参数量,定界用,输入时切勿搞错 va_list ap; // 定义一个 va_list 指针来访问参数表 va_start(ap, n); // 初始化 ap,让它指向第一个变参 int maximum = -0x7FFFFFFF; // 这是一个最小的整数 int temp; for(int i = 0; i < n; i++) { temp = va_arg(ap, int); // 获取一个 int 型参数,并且 ap 指向下一个参数 if(maximum < temp) maximum = temp; } va_end(ap); // 善后工作,关闭 ap return max; } // 在主函数中测试 max 函数的行为(C++ 格式) int main() { cout << max(3, 10, 20, 30) << endl; cout << max(6, 20, 40, 10, 50, 30, 40) << endl; } 基本用法阐述至此,可以看到,这个方法存在两处极严重的漏洞:其一,输入参数的类型随意性,使得参数很容易以一个不正确的类型获取一个值(譬如输入一个float,却以int型去获取他),这样做会出现莫名其妙的运行结果;其二,变参表的大小并不能在运行时获取,这样就存在一个访问越界的可能性,导致后果严重的 RUNTIME ERROR。 另外, http://www.cndw.com/tech/program/2006051065821.asp http://blog.csdn.net/wzwind/archive/2007/06/26/1666518.aspx 作为建议,在 C++ 环境中尽量不要使用这种方法,如有需要,尽量先考虑使用类或者重载来代替,这样可以很好地弥补这种方法的漏洞。 全文完感谢读者,ELF原创,转载请注明出处 |