- 算法基础1.3:双指针,位运算,离散化,区间合并
sunluyang521
算法基础算法
双指针for(inti=0,j=0;iusingnamespacestd;constintN=100010;intn;intq[N],s[N];//s存的是当前j到i这个区间里面每一个数出现的次数。intmain(){scanf("%d",&n);for(inti=0;i1)s[q[j++]]--;//有重复的数,把它拿出去,表示这个数减1res=max(res,i-j+1);//更新答案}cou
- [AcWing] 算法基础课(一)学算法强推哦
vo很懒
算法算法leetcode数据结构
第一讲基础算法本文题目及代码全部来自AcWing,强推!(因为没有接触过C++所以一开始学起来不是很容易,慢慢听下去边查边学就好啦)文章目录第一讲基础算法1.排序1.1快速排序1.2归并排序2.二分2.1整数二分(较麻烦)2.2浮点数二分3.前缀和与差分3.1前缀和3.2差分4.双指针5.位运算6.离散化7.区间合并1.排序1.1快速排序快速排序基础算法:题目:#includeusingnames
- 量化噪声介绍
正是读书时
知识点概率论线性代数
量化噪声是在将模拟信号转换为数字信号的量化过程中产生的噪声。以下为你详细介绍:1.量化的基本概念在模拟信号数字化过程中,采样是对模拟信号在时间上进行离散化,而量化则是对采样值在幅度上进行离散化。由于模拟信号的取值是连续的,而数字信号的取值是离散的有限个值,所以在量化时,需要将模拟信号的采样值映射到最接近的离散量化电平上,这种映射过程不可避免地会产生误差,这种误差就表现为量化噪声。2.量化噪声的定义
- 相机模数转换
xiangxiang-
数码相机计算机视觉人工智能
模拟图像是什么?模拟图像是指连续变化的图像,它通常来源于现实世界的物理场景,并通过光学系统(如相机镜头)投射到感光介质上。模拟图像是连续的,这意味着它在空间和颜色值上都有无穷的细节。例如,模拟图像中的亮度和色彩信息随着位置的变化而变化,并且没有离散化。在拍摄照片时,模拟图像通常指的是通过相机感光元件(如CCD或CMOS传感器)捕获的光学图像,这些图像反映了场景中的光强度、颜色、纹理等细节信息。传感
- spark streaming基础操作
天选之子123
大数据spark大数据分布式
sparkstreaming基础操作一、什么是sparkstreamingSparkStreaming用于流式数据的处理。SparkStreaming使用离散化流(discretized作为抽象表示,叫作DStream。DStream是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为RDD存在,而DStream是由这些RDD所组成的序列(因此得名“离散化”)。简单来说,DStre
- 每日一题006-离散化和哈希-洛谷p1955程序自动分析
YQ_ZJH
每日一题哈希算法算法数据结构c++蓝桥杯
P1955NOI2015程序自动分析题目描述在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。考虑一个约束满足问题的简化版本:假设x1,x2,x3,⋯x_1,x_2,x_3,\cdotsx1,x2,x3,⋯代表程序中出现的变量,给定nnn个形如xi=xjx_i=x_jxi=xj或xi≠xjx_i\neqx_jxi=xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量
- 题解 洛谷 Luogu P1955 [NOI2015] 程序自动分析 并查集 离散化 哈希表 C++
qwq_ovo_pwp
c++数据结构算法
题目传送门P1955[NOI2015]程序自动分析-洛谷|计算机科学教育新生态https://www.luogu.com.cn/problem/P1955思路主要用到的知识是并查集(如何实现并查集,这里不赘述了)若xi=xj,则合并它们所在的集合。若xi!=xj,则i和j若在同一个集合,则false但是用最简单的并查集并不能AC本题,因为i、j相当大,数组承受不了需要做离散化。用哈希表做离散化比较
- 洛谷 P3029 [USACO11NOV]【牛的阵容Cow Lineup】
weixin_30376323
数据结构与算法
描述CowLineup[BrianDeanandDanielDara,2012]FarmerJohn'sNcows(12usingnamespacestd;3intn,k,ans=0;4mapsj;//离散化5intcow[100001];//牛的编号6intin[100001];//区间内的每个编号的数量7longlongread()//快读,这个是真的有用,能节省很多时间8{9longlong
- 离散化、贪心、双指针、二分、倍增、构造、位运算
那只狸花猫吖
蓝桥杯算法
目录八、离散化1、离散化简介九、贪心1、贪心的概念十、双指针1、双指针简介2、对撞指针3、快慢指针十一、二分1、二分的概念2、二分的两种模板十二、倍增1、定义十三、构造1、定义十四、位运算1、位运算概述八、离散化1、离散化简介把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数
- Python中的有限元方法:详细指南与代码实现,用于计算电磁学组建模电磁现象
快撑死的鱼
python算法解析python开发语言
第一部分:简介与背景在现代工程和科学中,计算电磁学已经成为了一个不可或缺的工具。它为我们提供了一种方法,可以在计算机上模拟电磁现象,而不是在实验室中进行实验。有限元方法(FEM)是其中的一种流行的数值方法,它可以用于解决各种各样的工程问题,包括电磁学问题。有限元方法的基本思想是将一个连续的问题离散化,将其转化为在有限数量的点上求解的问题。这样,我们可以使用线性代数的技术来求解这些问题,从而得到近似
- 【Python蓝桥杯备赛宝典】
殇在山风
蓝桥杯Pythonpython蓝桥杯开发语言算法贪心算法动态规划排序算法
文章目录一、基础数据结构1.1链表1.2队列1.3栈1.4二叉树1.5堆二、基本算法2.1算法复杂度2.2尺取法2.3二分法2.4三分法2.5倍增法和ST算法2.6前缀和与差分2.7离散化2.8排序与排列2.9分治法2.10贪心法1.接水时间最短问题2.糖果数量有限问题3.分发时间最短问题4.采摘苹果最多问题三、搜索3.1BFS和DFS基础3.2剪枝3.3洪水填充3.4BFS与最短路径3.5双向广
- 【C++动态规划 离散化】1626. 无矛盾的最佳球队|2027
闻缺陷则喜何志丹
c++动态规划算法leetcode最佳球队无矛盾
本文涉及知识点C++动态规划离散化LeetCode1626.无矛盾的最佳球队假设你是球队的经理。对于即将到来的锦标赛,你想组合一支总体得分最高的球队。球队的得分是球队中所有球员的分数总和。然而,球队中的矛盾会限制球员的发挥,所以必须选出一支没有矛盾的球队。如果一名年龄较小球员的分数严格大于一名年龄较大的球员,则存在矛盾。同龄球员之间不会发生矛盾。给你两个列表scores和ages,其中每组scor
- 【spark床头书系列】Spark Streaming 编程权威使用指南
BigDataMLApplication
spark大数据流数据处理#大数据spark大数据分布式
SparkStreaming编程权威使用指南文章目录SparkStreaming编程权威使用指南概述快速示例基本概念链接初始化StreamingContext离散化流(DStreams)输入DStreams和Receivers基本源文件流基于自定义接收器的流作为流的RDD队列高级源自定义源接收器的可靠性在DStreams上的转换操作updateStateByKey操作transform操作窗口操作
- Python pandas离散化方法优化与应用实例
python慕遥
Python数据分析Pandas数据科学pythonpandas机器学习
大家好,在数据分析中,离散化是将连续数据划分为不同区间的一种重要方法。这种方法可以更好地理解数据分布、简化分析、或在分类建模中对特征进行转换。在Python的Pandas库中,cut和qcut是两个强大的工具,分别用于基于固定区间和基于分位数对数据进行离散化。它们的灵活性和易用性使其在数据处理过程中十分常用。离散化可以将复杂的连续数据转化为更直观的区间,帮助快速发现数据分布规律,并且在机器学习中,
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 基础算法(一)#蓝桥杯
席万里
C/C++算法蓝桥杯c++
文章目录1、模拟1.1、DNA序列修正1.2、无尽的石头2、递归2.1、带备忘录的斐波那契数列2.2、数的计算3、进制转换3.1、进制转换模板3.2、Alice和Bob的爱恨情仇4、前缀和4.1、前缀和模板4.2、区间次方和4.3、小郑的蓝桥平衡串4.4、大石头的搬运工4.5、最大数组和4.6、四元组问题**5、差分5.1、区间更新(一维差分)5.2、肖恩的投球游戏加强版5.4、泡澡6、离散化6.
- 主席树求区间第K小模板
Stephen_Curry___
算法c++数据结构主席树
主席树(PresidentTree)是一种用于解决区间查询和修改问题的数据结构,通常用于静态区间问题(即查询和修改操作在构建结构之后不再发生变化)。主席树可以高效地处理诸如区间和、区间最值等问题。主席树的实现原理:基本思想:主席树是一种基于分治思想的数据结构,它将原始序列按照每个位置的取值范围进行离散化,然后构建出一棵持久化线段树(PersistentSegmentTree)。持久化线段树:持久化
- 【算法随笔:HDU 3333 Turing tree】(线段树 | 离线 | 离散化 | 贪心)
XNB's Not a Beginner
算法算法哈希算法leetcodec++排序算法
https://acm.hdu.edu.cn/showproblem.php?pid=3333https://acm.hdu.edu.cn/showproblem.php?pid=3333https://vjudge.net.cn/problem/HDU-3333https://vjudge.net.cn/problem/HDU-3333题目很简单,给出长度为N的数组,Q次询问,每次给出区间[x,
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 离散化【学习笔记】
Simple World.
c++算法
引入小丁:小智,你不觉得我们小区旁边的树木太多太挤了吗?小智:确实。要不我们把一些树移走?小区对面的学校旁可正缺树呢!小丁:不过我们又不能自己把树移走,得找人帮忙。小智:嗯。要不我们就在树旁边标记一下,让园林工人移植一下吧。小丁和小智开始了自己的活儿……小丁从左往右,每数120棵便标记一棵树。小智从左往右,每数422棵便标记一棵树。小智:我们最好算算需要移走多少棵树,好让园林工人校对。小丁:我怎么
- C++ 离散化 算法 (详解)+ 例题
喝可乐的布偶猫
算法学习笔记算法c++数据结构
1、性质把无限空间中有限的个体映射到有限的空间中去,以此提高算法的空间效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的压缩。适用范围:数的跨度很大,用的数很稀疏例如:值域:1~10^9,个数:10^5,值域很大,但是用到个数相对很少,这个时候就可以离散化比如:将a[i]:13100200050000//这里需要注意可以离散化的前提是数组元素必须是有序的 i:01 2 3
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 牛客周赛 Round 28 F
Xing_ke309
算法数据结构
F.小红统计区间(hard)题目链接为前缀和枚举右端点看有多少个左端点满足条件,即在一个数轴上找的的个数。可以利用树状数组区间查询,查找中满足条件的前缀和。具体操作为先查找,再把自身在数轴上对应的数的个数加一。所以统计时没有统计自身对答案的影响。当前操作为第位时,则数轴上只记录了的前缀和。由于前缀和过大,形成的数轴过长,采用离散化。将所有前缀和由小到大排序并去重,构成新数轴。由于在数轴上可能没有直
- 代码源每日一题Div.1 (301~307)
xhyu61
做题笔记算法学习算法贪心算法动态规划acm竞赛深度优先
301-连续子序列题目链接简单的动态规划题目,先将所有数进行一个离散化,然后dp。dp[i]dp[i]dp[i]表示这个位置为结尾的最长符合要求的子序列的长度。对于每一个位置,找这个数对应的离散化编号的上一个数在什么位置,如果那个数目前为止还没有出现,或者那个数与这个数的差不是111,dp[i]=1dp[i]=1dp[i]=1;否则设上一个数最后一次出现在lstlstlst,那么dp[i]=dp[
- Python建模复习 :数据挖掘技术理论
啾啾二一
第二部分数据挖掘技术理论2.1数据分析方法论KDD知识发现KnowledgeDiscoveryfromDatabase:数据清理、数据集成、数据选择、数据变换(正规化、泛化、离散化)、数据挖掘、模式评估、知识表示。CRISP-DM(cross-industryprocessfordatamining):业务理解、数据理解、数据准备、建模、模型评估和模型发布。SEMMA:抽样Sample、探索Exp
- 【北邮鲁鹏老师计算机视觉课程笔记】05 Hough 霍夫变换
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】05Hough霍夫变换1投票策略考虑到外点率太高①让直线上的每一点投票②希望噪声点不要给具体的任何模型投票,即噪声点不会有一致性的答案③即使被遮挡了,也能把直线找出来参数空间离散化直线相当于就是m,b两个参数点给参数空间投票找到投票最多的参数点给参数空间投票上图,图像空间的一条直线在参数空间是一个点上图:图像空间的一个点对应参数空间的一条直线因为在图像空间确定一个
- 基础算法(排序,二分,高精度加减乘除,前缀和与差分,离散化,位运算,双指针等)介绍
赵英英俊
算法总结算法c++数据结构
基础算法文章目录基础算法排序快速排序归并排序二分算法整数二分浮点数二分高精度加减乘除高精度加法高精度减法高精度乘法高精度除法前缀和与差分一维前缀和二维前缀和一维差分二维差分双指针算法位运算离散化区间合并代码模板排序快速排序时间复杂度为nlogn级别主要思想是每次选取一个基准(一般是以中间为基准),然后从数组的头尾开始进行比较,保证基准的左边都是小于基准的数,基准的右边都是大于基准的数,然后通过同样
- Acwing算法基础1——快排 归并 二分 前缀和 差分 双指针 位运算 离散化 区间和
倩mys
数据结构与算法算法数据结构java
文章目录1、快排----分治2、归并——分治3、二分法4、高精度(C++)5、前缀和(一维、二维)6、差分(一维、二维)7、双指针算法8、位运算9、离散化10、区间和流程:1.理解思想,背模板2.刷题目3.重复3~5遍2021.9.111、快排----分治主要思想:1.确定分界点:q[l]q[(l+r)/2]q[r]随机2.调整范围:x放右边3.递归:处理左右两端难点:划分快排不稳定,如何变得稳定
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。