GitHub开源项目之“线程池”

Table of Contents

A simple C thread pool implementation

Possible enhancements

原理

代码

threadpool.h

threadpool.c

测试例:

heavy.c

shutdown.c

thrdtest.c


A simple C thread pool implementation

Currently, the implementation:

  • Works with pthreads only, but API is intentionally opaque to allow other implementations (Windows for instance).
  • Starts all threads on creation of the thread pool.
  • Reserves one task for signaling the queue is full.
  • Stops and joins all worker threads on destroy.

Possible enhancements

The API contains addtional unused 'flags' parameters that would allow some additional options:

  • Lazy creation of threads (easy)
  • Reduce number of threads automatically (hard)
  • Unlimited queue size (medium)
  • Kill worker threads on destroy (hard, dangerous)
  • Support Windows API (medium)
  • Reduce locking contention (medium/hard)

https://github.com/mbrossard/threadpool


原理

GitHub开源项目之“线程池”_第1张图片

GitHub开源项目之“线程池”_第2张图片

上图来自:(https://mp.weixin.qq.com/s/O5Ubr9nyUm7os4M6BJGYDA)

相关技术文章

https://blog.csdn.net/qq_36359022/article/details/78796784

https://mp.weixin.qq.com/s/O5Ubr9nyUm7os4M6BJGYDA

 

代码

threadpool.h

/*
 * Copyright (c) 2016, Mathias Brossard .
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 *  1. Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _THREADPOOL_H_
#define _THREADPOOL_H_

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @file threadpool.h
 * @brief Threadpool Header File
 */
 
 /**
 * Increase this constants at your own risk
 * Large values might slow down your system
 */
#define MAX_THREADS 64
#define MAX_QUEUE 65536

typedef struct threadpool_t threadpool_t;

typedef enum {
    threadpool_invalid        = -1,
    threadpool_lock_failure   = -2,
    threadpool_queue_full     = -3,
    threadpool_shutdown       = -4,
    threadpool_thread_failure = -5
} threadpool_error_t;

typedef enum {
    threadpool_graceful       = 1
} threadpool_destroy_flags_t;

/**
 * @function threadpool_create
 * @brief Creates a threadpool_t object.
 * @param thread_count Number of worker threads.
 * @param queue_size   Size of the queue.
 * @param flags        Unused parameter.
 * @return a newly created thread pool or NULL
 */
threadpool_t *threadpool_create(int thread_count, int queue_size, int flags);

/**
 * @function threadpool_add
 * @brief add a new task in the queue of a thread pool
 * @param pool     Thread pool to which add the task.
 * @param function Pointer to the function that will perform the task.
 * @param argument Argument to be passed to the function.
 * @param flags    Unused parameter.
 * @return 0 if all goes well, negative values in case of error (@see
 * threadpool_error_t for codes).
 */
int threadpool_add(threadpool_t *pool, void (*routine)(void *),
                   void *arg, int flags);

/**
 * @function threadpool_destroy
 * @brief Stops and destroys a thread pool.
 * @param pool  Thread pool to destroy.
 * @param flags Flags for shutdown
 *
 * Known values for flags are 0 (default) and threadpool_graceful in
 * which case the thread pool doesn't accept any new tasks but
 * processes all pending tasks before shutdown.
 */
int threadpool_destroy(threadpool_t *pool, int flags);

#ifdef __cplusplus
}
#endif

#endif /* _THREADPOOL_H_ */

threadpool.c

/*
 * Copyright (c) 2016, Mathias Brossard .
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 *  1. Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * @file threadpool.c
 * @brief Threadpool implementation file
 */

#include 
#include 
#include 

#include "threadpool.h"

typedef enum {
    immediate_shutdown = 1,
    graceful_shutdown  = 2
} threadpool_shutdown_t;

/**
 *  @struct threadpool_task
 *  @brief the work struct
 *
 *  @var function Pointer to the function that will perform the task.
 *  @var argument Argument to be passed to the function.
 */

typedef struct {
    void (*function)(void *);
    void *argument;
} threadpool_task_t;

/**
 *  @struct threadpool
 *  @brief The threadpool struct
 *
 *  @var notify       Condition variable to notify worker threads.
 *  @var threads      Array containing worker threads ID.
 *  @var thread_count Number of threads
 *  @var queue        Array containing the task queue.
 *  @var queue_size   Size of the task queue.
 *  @var head         Index of the first element.
 *  @var tail         Index of the next element.
 *  @var count        Number of pending tasks
 *  @var shutdown     Flag indicating if the pool is shutting down
 *  @var started      Number of started threads
 */
struct threadpool_t {
  pthread_mutex_t lock;
  pthread_cond_t notify;
  pthread_t *threads;
  threadpool_task_t *queue;
  int thread_count;
  int queue_size;
  int head;
  int tail;
  int count;
  int shutdown;
  int started;
};

/**
 * @function void *threadpool_thread(void *threadpool)
 * @brief the worker thread
 * @param threadpool the pool which own the thread
 */
static void *threadpool_thread(void *threadpool);

int threadpool_free(threadpool_t *pool);

threadpool_t *threadpool_create(int thread_count, int queue_size, int flags)
{
    threadpool_t *pool;
    int i;
    (void) flags;

    if(thread_count <= 0 || thread_count > MAX_THREADS || queue_size <= 0 || queue_size > MAX_QUEUE) {
        return NULL;
    }

    if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {
        goto err;
    }

    /* Initialize */
    pool->thread_count = 0;
    pool->queue_size = queue_size;
    pool->head = pool->tail = pool->count = 0;
    pool->shutdown = pool->started = 0;

    /* Allocate thread and task queue */
    pool->threads = (pthread_t *)malloc(sizeof(pthread_t) * thread_count);
    pool->queue = (threadpool_task_t *)malloc
        (sizeof(threadpool_task_t) * queue_size);

    /* Initialize mutex and conditional variable first */
    if((pthread_mutex_init(&(pool->lock), NULL) != 0) ||
       (pthread_cond_init(&(pool->notify), NULL) != 0) ||
       (pool->threads == NULL) ||
       (pool->queue == NULL)) {
        goto err;
    }

    /* Start worker threads */
    for(i = 0; i < thread_count; i++) {
        if(pthread_create(&(pool->threads[i]), NULL,
                          threadpool_thread, (void*)pool) != 0) {
            threadpool_destroy(pool, 0);
            return NULL;
        }
        pool->thread_count++;
        pool->started++;
    }

    return pool;

 err:
    if(pool) {
        threadpool_free(pool);
    }
    return NULL;
}

int threadpool_add(threadpool_t *pool, void (*function)(void *),
                   void *argument, int flags)
{
    int err = 0;
    int next;
    (void) flags;

    if(pool == NULL || function == NULL) {
        return threadpool_invalid;
    }

    if(pthread_mutex_lock(&(pool->lock)) != 0) {
        return threadpool_lock_failure;
    }

    next = (pool->tail + 1) % pool->queue_size;

    do {
        /* Are we full ? */
        if(pool->count == pool->queue_size) {
            err = threadpool_queue_full;
            break;
        }

        /* Are we shutting down ? */
        if(pool->shutdown) {
            err = threadpool_shutdown;
            break;
        }

        /* Add task to queue */
        pool->queue[pool->tail].function = function;
        pool->queue[pool->tail].argument = argument;
        pool->tail = next;
        pool->count += 1;

        /* pthread_cond_broadcast */
        if(pthread_cond_signal(&(pool->notify)) != 0) {
            err = threadpool_lock_failure;
            break;
        }
    } while(0);

    if(pthread_mutex_unlock(&pool->lock) != 0) {
        err = threadpool_lock_failure;
    }

    return err;
}

int threadpool_destroy(threadpool_t *pool, int flags)
{
    int i, err = 0;

    if(pool == NULL) {
        return threadpool_invalid;
    }

    if(pthread_mutex_lock(&(pool->lock)) != 0) {
        return threadpool_lock_failure;
    }

    do {
        /* Already shutting down */
        if(pool->shutdown) {
            err = threadpool_shutdown;
            break;
        }

        pool->shutdown = (flags & threadpool_graceful) ?
            graceful_shutdown : immediate_shutdown;

        /* Wake up all worker threads */
        if((pthread_cond_broadcast(&(pool->notify)) != 0) ||
           (pthread_mutex_unlock(&(pool->lock)) != 0)) {
            err = threadpool_lock_failure;
            break;
        }

        /* Join all worker thread */
        for(i = 0; i < pool->thread_count; i++) {
            if(pthread_join(pool->threads[i], NULL) != 0) {
                err = threadpool_thread_failure;
            }
        }
    } while(0);

    /* Only if everything went well do we deallocate the pool */
    if(!err) {
        threadpool_free(pool);
    }
    return err;
}

int threadpool_free(threadpool_t *pool)
{
    if(pool == NULL || pool->started > 0) {
        return -1;
    }

    /* Did we manage to allocate ? */
    if(pool->threads) {
        free(pool->threads);
        free(pool->queue);
 
        /* Because we allocate pool->threads after initializing the
           mutex and condition variable, we're sure they're
           initialized. Let's lock the mutex just in case. */
        pthread_mutex_lock(&(pool->lock));
        pthread_mutex_destroy(&(pool->lock));
        pthread_cond_destroy(&(pool->notify));
    }
    free(pool);    
    return 0;
}


static void *threadpool_thread(void *threadpool)
{
    threadpool_t *pool = (threadpool_t *)threadpool;
    threadpool_task_t task;

    for(;;) {
        /* Lock must be taken to wait on conditional variable */
        pthread_mutex_lock(&(pool->lock));

        /* Wait on condition variable, check for spurious wakeups.
           When returning from pthread_cond_wait(), we own the lock. */
        while((pool->count == 0) && (!pool->shutdown)) {
            pthread_cond_wait(&(pool->notify), &(pool->lock));
        }

        if((pool->shutdown == immediate_shutdown) ||
           ((pool->shutdown == graceful_shutdown) &&
            (pool->count == 0))) {
            break;
        }

        /* Grab our task */
        task.function = pool->queue[pool->head].function;
        task.argument = pool->queue[pool->head].argument;
        pool->head = (pool->head + 1) % pool->queue_size;
        pool->count -= 1;

        /* Unlock */
        pthread_mutex_unlock(&(pool->lock));

        /* Get to work */
        (*(task.function))(task.argument);
    }

    pool->started--;

    pthread_mutex_unlock(&(pool->lock));
    pthread_exit(NULL);
    return(NULL);
}

测试例:

heavy.c

#include 
#include 
#include 
#include 

#include "threadpool.h"

#define THREAD 4
#define SIZE   8192
#define QUEUES 64

/*
 * Warning do not increase THREAD and QUEUES too much on 32-bit
 * platforms: because of each thread (and there will be THREAD *
 * QUEUES of them) will allocate its own stack (8 MB is the default on
 * Linux), you'll quickly run out of virtual space.
 */

threadpool_t *pool[QUEUES];
int tasks[SIZE], left;
pthread_mutex_t lock;

int error;

void dummy_task(void *arg) {
    int *pi = (int *)arg;
    *pi += 1;

    if(*pi < QUEUES) {
        assert(threadpool_add(pool[*pi], &dummy_task, arg, 0) == 0);
    } else {
        pthread_mutex_lock(&lock);
        left--;
        pthread_mutex_unlock(&lock);
    }
}

int main(int argc, char **argv)
{
    int i, copy = 1;

    left = SIZE;
    pthread_mutex_init(&lock, NULL);

    for(i = 0; i < QUEUES; i++) {
        pool[i] = threadpool_create(THREAD, SIZE, 0);
        assert(pool[i] != NULL);
    }

    usleep(10);

    for(i = 0; i < SIZE; i++) {
        tasks[i] = 0;
        assert(threadpool_add(pool[0], &dummy_task, &(tasks[i]), 0) == 0);
    }

    while(copy > 0) {
        usleep(10);
        pthread_mutex_lock(&lock);
        copy = left;
        pthread_mutex_unlock(&lock);
    }

    for(i = 0; i < QUEUES; i++) {
        assert(threadpool_destroy(pool[i], 0) == 0);
    }

    pthread_mutex_destroy(&lock);

    return 0;
}

shutdown.c

#include 
#include 
#include 
#include 

#include "threadpool.h"

#define THREAD 4
#define SIZE   8192

threadpool_t *pool;
int left;
pthread_mutex_t lock;

int error;

void dummy_task(void *arg) {
    usleep(100);
    pthread_mutex_lock(&lock);
    left--;
    pthread_mutex_unlock(&lock);
}

int main(int argc, char **argv)
{
    int i;

    pthread_mutex_init(&lock, NULL);

    /* Testing immediate shutdown */
    left = SIZE;
    pool = threadpool_create(THREAD, SIZE, 0);
    for(i = 0; i < SIZE; i++) {
        assert(threadpool_add(pool, &dummy_task, NULL, 0) == 0);
    }
    assert(threadpool_destroy(pool, 0) == 0);
    assert(left > 0);

    /* Testing graceful shutdown */
    left = SIZE;
    pool = threadpool_create(THREAD, SIZE, 0);
    for(i = 0; i < SIZE; i++) {
        assert(threadpool_add(pool, &dummy_task, NULL, 0) == 0);
    }
    assert(threadpool_destroy(pool, threadpool_graceful) == 0);
    assert(left == 0);

    pthread_mutex_destroy(&lock);

    return 0;
}

thrdtest.c

#define THREAD 32
#define QUEUE  256

#include 
#include 
#include 
#include 

#include "threadpool.h"

int tasks = 0, done = 0;
pthread_mutex_t lock;

void dummy_task(void *arg) {
    usleep(10000);
    pthread_mutex_lock(&lock);
    done++;
    pthread_mutex_unlock(&lock);
}

int main(int argc, char **argv)
{
    threadpool_t *pool;

    pthread_mutex_init(&lock, NULL);

    assert((pool = threadpool_create(THREAD, QUEUE, 0)) != NULL);
    fprintf(stderr, "Pool started with %d threads and "
            "queue size of %d\n", THREAD, QUEUE);

    while(threadpool_add(pool, &dummy_task, NULL, 0) == 0) {
        pthread_mutex_lock(&lock);
        tasks++;
        pthread_mutex_unlock(&lock);
    }

    fprintf(stderr, "Added %d tasks\n", tasks);

    while((tasks / 2) > done) {
        usleep(10000);
    }
    assert(threadpool_destroy(pool, 0) == 0);
    fprintf(stderr, "Did %d tasks\n", done);

    return 0;
}

 

你可能感兴趣的:(计算机语言,操作系统,基础知识)