继电器是总称
他的意思就是说,继承控制,用很小的电力和电流,驱动一个设备(电动机或电磁铁)带动一个负载部件(比如电闸或接触片)让这个接触片去承载大电流。
比如我们的开关只需要12V 0.1A控制继电器,就能让继电器帮助我们接通和分断几百万伏特,电流高达几千甚至几万安培的特高压线路。
无论在什么地方,想要不让控制者或器件危险,使用继电器是最好不过了,让我们接触安全的一边,让继电器去接触危险的一边,我们只要控制继电器动作,继电器就会帮助我们连接我们不想亲自去碰的一些线路。
继电器是一个总称
还分为
接触器(专门用来控制通断,负载很大电流的继电器,但动作不快)
中间继电器(比较迅速了,一般长见的小型的都是这种)
时间继电器(用来控制时间动作的,比如晚上路灯自动亮)还有其他很多很多。用一个器件和继电器组合就得到一个新东西,比如用钟表和继电器组合得到时间继电器。
继电器的作用:用小电流或低电压或小功率控制大电流或高电压或大功率的设备;增加控制接点;
可分为:高灵敏度继电器
时间继电器
中间继电器
固态继电器.......
按作用原理分 1.电磁继电器 2.固态继电器3.时间继电器4.温度继电器 5.风速继电器 6.加速度继电器 7.光继电器8.声继电器9.热继电器等等
继电器就其在控制电路中的作用来讲,它是以一定的输入信号(如电流、电压或其它热、光非电信号)实现自动切换电路的“开关”。所以,它是一种自动、远动电器元件。另外,继电器也不单是作为一个简单的“开关”来用,它还有其它的“控制”作用。例如电车的快、慢、起、停控制;汽车转弯的指示等都是继电器在工作。
继电器作为一个控制电器来讲,它有两个主要部分:一
个是控制系统(又叫输入回路);另一个是被控制系统(又
叫输出回路)。继电器之所以能起自动控制作用,是因为当它的控制系统中输入的某信号(输入量),如电、、、热等物理量,达到某一定值时,能使输出回路的被控制量(输出量)跳跃式的由零变化到一定值(或由一定位突跳到零)。
我们把这种能自动使被控制量发生跳跃变化的控制元件称为继电器。
继电器是一种用途广泛的产品,广泛应用于家电产品,如空调器、彩电、冰箱、洗衣机等;也应用于工业自动化控制和仪表。在电子元器件中,继电器一般被认为是一种最不可靠的电子元件,在整机可靠性设计中,把继电器、电位器、可调电感器及可变电容器列为建议不用或少用的元件。
但是,由于继电器在控制电路中有独特的电气、物理特性,其断态的高绝缘电阻和通态的低导通电阻,使得其它任何电子元器件无法与其相比,加上继电器标准化程度高、通用性好、可简化电路等优点,所以继电器仍得以广泛应用。随着科技的飞速发展,继电器在程控通信设备中的使用量还在进一步增加,所以,如何保证继电器的可靠性,满足整机系统的可靠性,成为人们关注的焦点。
电子元器件的可靠性应由两部分组成,一是元器件的固有可靠性;二是元件的使用可靠性。固有可靠性是元器件可靠的基础,主要靠元器件制造商从设计、制造等方面进行有效的控制,以保证制造出来的元器件达到要求的可靠性等级。使用可靠性则是从使用入手,如何保证和提高元器件的可靠性,使其能满足整机系统的可靠性要求。没有高可靠质量等级的元件,不可能制造出高可靠的电子设备,所以元器件的固有可靠性是整机可靠性的基础。但是,有了高可靠质量等级的元件也并不一定能制造出高可靠的整机,这里面就有—个使用可靠性的问题。所谓使用可靠性,就是根据各种元器件的特点利用可靠性设计技术,即元器件的合理选用、降额设计、容差与漂移设计、抗振设计、热设计、三防设计、抗幅射设计、电磁兼容设计、人机工程设计及维修设计等,最大限度的发挥元器件固有可靠性的作用,以达到整机系统的可靠性要求。
根据有关部门对整机失效原因的分析统计,其中有百分之四十以上的故障是由于元器件选用不合理造成的。随着元件制造技术的不断提高,在元器件的固有可靠性已经有了较大提高的情况下,使用可靠性就显得特别重要,而且,随着整机系统功能愈来愈全,所用元器件愈来愈多,对可靠性要求也愈来愈高,所以使用可靠性也愈来愈受到科技界的重视,并且发展成一门新的学科一人为工程。
由于继电器是一种机电一体化的元件,是由电磁及机械传动部分组成的,与其它电子元件相比,要复杂得多,加之在制造过程中有些装配调整是手工操作,所以产品的一致性和可靠性要差一些。但是,如果在使用中采取一些防范措施,仍能达到较满意的效果。在对失效继电器进行失效分析中发现,由于使用原因造成的失效约占百分之三十以上。由以上分析可知,继电器可靠性不高,除自身质量原因外,使用不当也是一个主要原因。现在,我们重点研究如何在使用中提高继电器可靠性的措施。继电器的种类较多,这里重点研究目前使用较多的电磁继电器的使用可靠性。
面对纷繁复杂的继电器产品,如何合理选择、正确使用,是系统开发、设计人员密切关注并且必须优先解决的实际问题。要做到合理选择,正确使用,就必须充分研究分析系统的实际使用条件与实际技术参数要求,按照“价值工程原则”,恰如其分地提出所选用继电器产品必须达到的技术性能要求。在整机的可靠性设计中,要求合理选用元器件。元器件的选择和控制是需要多学科知识才能完成的一项任务,一般应由元件工程师、可靠性设计师、总体及电路设计师、失效分析人员共同完成。首先要根据整机系统的重要程度、可靠性要求、所使用的环境条件及成本等项要求综合考虑和选择。具体说来,大致可按下列要素逐条分析研究,确认所要求的等级以及量值范围。选择时必须重视以下几个方面的要求。
2 继电器应用环境条件
气候应力作用要素,主要指温度、湿度、大气压力(海拔高度)、沿海大气(盐雾腐蚀)、砂尘污染、化学气体和电磁干扰等要素。考虑到系统在全国各地各行业及自然环境的普遍适用性,兼顾必须长年累月可靠运行的特殊性,系统关键部位必须选用具有高绝缘、强抗电性能的全密封型(金属罩密封或塑封型,金属罩密封产品优于塑封产品)继电器产品。因为只有全密封继电器才具有优良的长期耐受恶劣环境性能、良好的电接触稳定、可靠性和稳定的切换负载能力(不受外部气候环境影响)。
2.1 温度对继电器的影响
继电器是怕热元件,高温可加速继电器内部塑料及绝缘材料的老化、触点氧化腐蚀、熄弧困难、电参数变坏,使可靠性降低,所以,要求设计时使继电器不要靠近发热元件,并有良好的通风散热条件。
继电器虽然是怕热元件,但对过低温度(如军用航空条件-55℃)也不能忽视。低温可使触点冷粘作用加剧,触点表面起露,衔铁表面产生冰膜,使触点不能正常转换,尤其是小功率继电器更为严重。试验证明,对于有些按部标生产的国产小功率继电器,虽然使用条件规定低温为-55℃,但实际上在此条件下继电器根本无法进行正常转换,建议在选择时要留有充分的余量,对于重要的军用电子整机,建议选用国军标产品。
2.2 低气压对继电器的影响
在低气压条件下,继电器散热条件变坏,线圈温度升高,使继电器给定的吸合、释放参数发生变化,影响继电器的正常工作;低气压还可使继电器绝缘电阻降低、触点熄弧困难,容易使触点烧熔,影响继电器的可靠性。对于使用环境较恶劣的条件,建议采用整机密封的办法。
2.3 机械应力对继电器的影响
主要指振动、冲击、碰撞等应力作用要素。对控制系统主要考虑的是抗地震应力作用、抗机械应力作用能力,宜选用采用平衡衔铁机构的小型中间继电器。电磁继电器的簧片均为悬梁结构,固有频率低,振动和冲击可引起谐振,导致继电器触点压力下降,容易产生瞬间断开或触点出现抖动,严重时可造成结构损坏,可动的衔铁部分可产生误动作,影响继电器的可靠性。建议在设计中尽量采取防振措施以防产生谐振。
2.4 绝缘耐压
非密封或密封继电器的引出端外露绝缘子长期受尘埃、水气污染,导致其绝缘强度下降,在切换感性负载时的过电压作用下,引起绝缘击穿失效。针对继电器绝缘固有特性,在选型时必须依据继电器的以下技术特性:
2.4.1 足够的爬电距离:一般要求>3mm(工作AC 220V);
2.4.2 足够的绝缘强度:无电气联系的导体之间>AC 2000V(工作AC 220V),同组触点之间>AC 1000V;
2.4.3 足够的负载能力:DC 220V感性;5~40ms,>50W;
2.4.4 长期耐受气候应力的能力:线圈防霉断、绝缘抗电水平长期稳定可靠。
3 激励线圈输入参量
主要是指过激励、欠激励、低压激励与高压(220V)输出隔离、温度变化影响、远距离有线激励、电磁干扰等要素,这些都是确保系统可靠运行必须认真考虑的因素。按继电器所规定的激励量激励是确保它可靠、稳定工作的必要条件。
继电器的技术条件一般对线圈的电压都给出工作电压、吸合电压、释放电压。要保证继电器的正常工作,在电路连接时,一定要保证在任何情况下都要使给定的三个电压满足技术条件规定的数值。否则,继电器无法正常转换。
3.1 关于串联供电激励方式
不少用户采用串联分压供电方式给继电器线圈施加激励量,驱动继电器动作。这种激励方式一般是不可取的。因继电器的吸合时间主要取决于回路的时间常数T,且T=L/R。当串联电阻R1给继电器线圈供电时,R=R1+R2,则有L/R2>L/(R1+R2);显然,串联R1后使T减小,继电器的吸合时间加速。特别是当R1>>R2,电压很高时,吸合时间将大大减少。运动部件的过快动作,将加大运动部件接合时的冲击、碰撞、反弹,从而增大触点回跳,加速机械磨损,降低触点的负载能力与机械寿命。因此,串联供电激励方式改变了继电器原设计所规定的正常工作状态,一般是不可取的。当触点回跳、机械磨损对实际使用不构成利害关系,且特别需要加快动作速度时,才可以采用提高激励电压或串联电阻供电激励方式。
3.2 继电器线圈串联的使用
采用多个继电器线圈串联后,再用DC 220V电源去激励,这种激励方式必须谨慎采用。
3.2.1
对相同类型、相同规格继电器产品而言,由于各线圈的阻抗(含直流电阻与瞬时感抗)大体相同,差值较小,故采用串联分压激励方式使用问题不大。实践证明也是可行的。
3.2.2
对不同类型或不同规格的继电器产品言之,由于不同继电器线圈的阻抗不一致,且差值随瞬时感抗的不同而相差很大,故串联激励瞬间,各继电器线圈上所分得的激励电压(由瞬时分压比决定)差值必然很大,势必出现有的继电器处于过压激励状态,有的则处于欠压激励状态,各继电器触点的开关时序与速度将会发生本质性变化,必然会出现动作先、后、快、慢颠倒,开关不可靠等情况。因此,不同类型、不同规格的继电器线圈不宜采用串联分压激励方式。
3.3 关于继电器线圈并联使用
在复杂的控制回路中,将2只(或多只)不同类型的继电器(如接触器K1、小型灵敏继电器K2)线圈并联使用的情况时有发生,在这种情况下,有可能产生Kl延迟释放、触点断弧能力下降,K2被反向重复激励、触点误动作等实际问题。在直流控制回路中,K1,K2线圈所贮存的磁能可能相差很大。当线圈电源失电后,K1(磁能大)的贮能将通过K2(磁能小)的线圈泄放,产生反向电流。从而导致K1释放时间延长,触点断弧速度迟缓,触点间燃弧时间延长;K2的释放时间短,随后被反向泄放电流所激励,甚至释放后瞬间重复吸合,产生误动作故障。在实际应用时应注意避免上述因疏于研究而导致的不可靠现象。
4 触点输出(换接电路)参量
主要是指触点负载性质,如灯负载,容性负载,电机负载,电感器、接触器线圈、扼流圈负载,阻性负载等;触点负载量值(开路电压量值、闭路电流量值),如低电平负载、干电路负载、小电流负载、大电流负载等。
根据被继电器驱动设备的负载性质、负载容量选用合适的继电器,是继电器可靠工作的基本条件,继电器的失效或可靠不可靠,主要指触点能否完成所规定的切换电路功能。如切换的实际负载容量大于所选用继电器规定的切换负载容量,继电器是不可能可靠工作的。
44.1 关于触点的负载
继电器触点故障是继电器失效的核心所在,当触点实际切换的负载电压小于起弧电压,电流小于lA时,特别是在中等电流(试验标准为DC
28V,0.1A)、低电平(10~30mV,l0~50μA)或干电路(指继电器触点先闭合,后接通毫伏微安级负载)条件下,触点实际工作时的失效机理、失效方式与实际切换额定功率负载全然不同。正是为了满足不同负载的不同要求,不同产品在设计、制造工艺、检测、试验要求也各不相同。因此,在实际选用继电器产品时,一定不能错误地认为:继电器的触点开关适用于从零到规定额定值的所有负载,更不能认为通过触点的实际负载比产品标准所规定的额定负载越小越可靠。例如能可靠切换220V,10A负载的触点,并不一定能可靠地切换10mA的实际负载,更不可用它去换接低电平或干电路负载。因此,对中等电流、低电平,干电路负载建议选用接触可靠性优良的金属罩全密封产品。
一般在可靠性设计中,降额设计是提高可靠性最有效的措施,对其它元器件来讲,如果不考虑其它的因素,如成本、体积等,降额越多,可靠性越高。但是,继电器与其它元器件有不同之处,并不是触点所加的负荷应力越小越可靠,这主要是由触点失效机理决定的。当触点电流使用到100毫安时,触点的电弧作用明显减弱,触点在高温条件下析出的含碳物质不能被电弧烧掉而沉积在触点表面,使触点接触电阻增大,影响接触可靠性。
当触点负荷使用在10毫安以下或50毫伏以下时,接触可靠性明显降低,因为这时电压无法击穿触点表面的膜电阻,将出现低电平失效。尤其在高温条件下,加速了触点的氧化,低电平失效表现得更为严重,所以把10毫安以上,50毫伏以下的负载称为低电平负载。
继电器的负荷应力虽然不能过小,但是,技术条件给出的负荷应力,是触点的最大额定值,是在任何情况下都不应该超过的参数。如果在使用中超过,轻者可造成寿命缩短,可靠性降低,重点可烧毁触点,造成失效。
这主要是继电器触点在大负荷下工作时所产生的飞弧导致触点被烧熔,在触点表面形成凹凸不平,形成机械咬合而无法分开,触点负荷越大,飞弧越大,触点被烧毁的可能性越大。从以上分析可知,适当的降额仍是提高继电器可靠性的有效措施。
触点负荷的正确使用,在一般情况下,负荷应设计在100毫安以上,技术指标给定的额定负荷值的百分之八十以下比较可靠。值得注意的是,继电器触点的额定负荷值是在阻性负载条件下给定的,当使用的负载是感性、容性及灯载时,可产生10倍的浪涌电流,所以如果不是阻性负载,使用时一般应按表1所示进行换算。
表1 负载换算
阻性负载电流感性负载电流电机负载电流灯泡负载电流
100%30%20%15%
4.2 关于电容负载
继电器接点作为切换容性负载回路的自保接点,易引起接点粘接而不能释放,其原因是由于电容器的充放电过程,类似于电容储能点焊过程。进一步分析试验表明:给22μF电容器充足DC
220V电压后,再激励继电器使其直接短路放电,10次之内,纯银触点即可产生焊接不放现象。从理论上考虑,电容器的放电电流为:
i=(U.T)eT
式中 U—为电容器两端电压;
R—为放电回路电阻;
T—为时间常数。
由于R约等于触点的接触电阻,趋近于零,在开始放电瞬间;i=U/R;i非常大,也就是说:电容器所储存的全部能量,在很短时间内全部通过触点泄放,从而直接导致点焊焊接失效,因此,长的传输线、消除电磁干扰用的滤波器、电源等都是强容性的。用于此类负载的继电器应结合设备特性选用。
4.3 关于继电器触点的并联使用
4.3.1
不能用触点并联的方式提高功率,有时,用一组触点不能满足电路的功率要求时,有时采用两组或多组触点并联的方式来保证电路的功率要求。但是,由于继电器触点在动作时存在小的时间差(一般两组触点动作时间相差0.1毫秒~0.2毫秒)。由此可知,先接通的一组触点将承受全部功率,处在超应力条件下进行切换,很容易被大电流形成的电弧烧毁而失效,所以,要求在使用继电器时,不能用触点并联的方式提高功率。
4.3.2
一般不采用触点并关的方式提高可靠性:在可靠性设计中,冗余设计可以提高可靠性。有些设计师利用冗余设计的原理,主观上想利用继电器触点并联的方式提高控制电路的可靠性。但是,一般控制电路的作用是利用触眯相互转换作用达到对电路的控制。如果采用触点并联的方式,接通的可靠性虽然提高了,但断开的可靠性却降低了,所以对一般用继电器控制的转换电路,采用并联方式提高可靠性是不可取的。只有对特殊要求,例如一次接通或断开就能完成规定功能的电路(如发射卫星,只要求继电器触点把火箭的点火系统接通就完成任务),采用触点并联的方式可提高可靠性。
4.4 继电器触点正确连接
4.4.1
应尽量多用动合触点、少用动断触点;在对继电器触点连接时,应尽量多采用动合触点的连接方式,少用动断触点,其原因是动合触点比动断触点在动作时的触点回跳次数少。众所周知,触点抖动对电路产生不良影响,而且缩短了触点的寿命。
4.4.2
对转换触点极性的正确连接;转换触点极性的连接对触点寿命的影响极大,正确的连接应是可动触点接电源阴极,固定触点接电源阳极。其原因是通过对两种不同连接的测试表明,在相同负载条件下,按上述正确的极性连接与相反的极性连接,其触点的燃弧时间要减短二分之一,因而提高了触点寿命。
当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。
1、电磁继电器的工作原理和特性
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
2、热敏干簧继电器的工作原理和特性
热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
3、固态继电器(SSR)的工作原理和特性
固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。
1、额定工作电压
是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。
2、直流电阻
是指继电器中线圈的直流电阻,可以通过万能表测量。
3、吸合电流
是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。
4、释放电流
是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。
5、触点切换电压和电流
是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。
1、测触点电阻
用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0,(用更加精确方式可测得触点阻值在100毫欧以内);而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。
2、测线圈电阻
可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。
3、测量吸合电压和吸合电流
找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。
4、测量释放电压和释放电流
也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁,工作不可靠。
继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字符号“J”。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。另一种是按照电路连接的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字符号,并将触点组编上号码,以示区别。继电器的触点有三种基本形式:
1.动合型(H型)线圈不通电时两触点是断开的,通电后,两个触点就闭合。以合字的拼音字头“H”表示。
2.动断型(D型)线圈不通电时两触点是闭合的,通电后两个触点就断开。用断字的拼音字头“D”表示。
3.转换型(Z型)这是触点组型。这种触点组共有三个触点,即中间是动触点,上下各一个静触点。线圈不通电时,动触点和其中一个静触点断开和另一个闭合,线圈通电后,动触点就移动,使原来断开的成闭合,原来闭合的成断开状态,达到转换的目的。这样的触点组称为转换触点。用“转”字的拼音字头“z”表示。
1.先了解必要的条件
①控制电路的电源电压,能提供的最大电流;
②被控制电路中的电压和电流;
③被控电路需要几组、什么形式的触点。选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。
2.查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。
3.注意器具的容积。若是用于一般用电器,除考虑机箱容积外,小型继电器主要考虑电路板安装布局。对于小型电器,如玩具、遥控装置则应选用超小型继电器产品。
微电子技术、电子计算机技术、现代通讯技术、光电子技术以及空间技术的飞速发展,对继电器技术提出了新的要求,新工艺、新技术的发展无疑对继电器技术的发展起到促进作用。
微电子技术和超大规模IC的飞速发展对继电器也提出了新的要求。第一是小型化和片状化。如IC封装的军用TO-5(8.5×8.5×7.0mm)继电器,它具有很高的抗振性,可使设备更加可靠;第二是组合化和多功能化,能与IC兼容、可内置放大器,要求灵敏度提高到微瓦级;第三是全固体化。固体继电器灵敏度高,可防电磁干扰和射频干扰。
计算机技术的普及使得微机用继电器的需求量显著增加,带微处理器的继电器将迅速发展。80年代初,美国生产的数字式时间继电器就可用指令对继电器进行控制,继电器与微处理器的组合发展,可形成一个小巧完善的控制系统。由计算机控制的工业机器人目前以每年3.5%的速度增长,现在,计算机控制的生产体制已能在一条生产线上生产多种低成本的继电器,并可自动完成多种操作及测试工作。
通讯技术的发展对继电器的发展具有深远的意义。一方面是由于通讯技术的迅速发展使整个继电器的应用增加。另一方面,由于光纤将是未来信息社会传输的主动脉,在光纤通讯、光传感、光计算机、光信息处理技术的推动下将出现光纤继电器、舌簧管光纤开关等新型继电器。
光电子技术对于继电器技术将产生巨大的促进作用,为实现光计算机的可靠运行,目前已试制出双稳态继电器。
为了提高航空、航天继电器的可靠性,期望继电器失效率应由目前的0.1PPM降至0.01PPM;载人空间站则要求达到0.001PPM。耐温要达到200℃以上,耐振要求高于490m/s,同时应能承受2.32×10(4)C/Kg的α射线辐射。为满足空间要求,必须加强可靠性研究,并建立专门的高可靠生产线。
新型特殊结构材料、新分子材料、高性能复合材料、光电子材料,还有吸氧磁性材料、感温磁性材料、非晶体软磁材料的发展对研制新型磁保持继电器、温度继电器、电磁继电器都具有重要的意义,并必将出现新原理、新效应的继电器。
随着微型和片式化技术的提高。继电器将向二维、三维尺寸只有几毫米的微型和表面贴装化方向发展;现在国际上有些厂家生产的继电器,体积只有5~10年前的1/4~1/8。因为电子整机在减小体积时,需要高度不超过其它电子元件的更小的继电器。通讯设备厂家对密集型继电器的需求更加热切,日本Fujitsu Takamisawa 公司生产的一种BA系列超密集信号继电器的大小只有14.9(W)×7.4(D)×9.7(H)mm,主要用于传真机和调制解调器,能承受3kV的波动电压。该公司推出的AS系列表面安装继电器的体积仅为14(W)×9(D)×6.5(H)mm。
在功率继电器领域尤其需要安全可靠的继电器,如高绝缘性继电器。日本Fujitsu TaKamisawa推出的JV系列功率继电器内含五个放大器,采用高绝缘性小截面设计,尺寸为17.5(W)×10(D)×12.5(H)mm。由于机芯和外缘之间采用强化绝缘系统,其绝缘性能达到5kV。日本NEC 推出的MR82系列功率继电器的功耗只有200mW。
在继电器内部装入各种放大、延时、消触点抖动、灭弧、遥控、组合逻辑等电路可使其具有更多的功能。随着SOP技术(Small Outline Package)的突破,生产厂家有可能把越来越多的功能集成到一起。而继电器与微处理器的组合将具备更广泛的专门控制功能,从而实现高智能化。
新技术的成群崛起,将促进不同原理、不同性能、不同结构和用途的各类继电器竞相发展。在科技进步、需求牵引以及敏感、功能材料发展的推动下,特种继电器,如温度、射频、高压、高绝缘、低热电势以及非电量控制等继电器的性能将日臻完善。
电磁继电器(EMR)从最初使用电话继电器算起,至今已有150多年的历史了。伴随着电子工业的发展,特别是20世纪70年代初期光耦合技术的突破,使固态继电器(SSR,亦称电子继电器)异军突起。同传统继电器相比,它具有寿命长、结构简单、重量轻、性能可靠等优点。固态继电器没有机械开关,而且具有诸如与微处理器高度兼容、速度快、抗冲击、耐振、低漏电等重要特性。同时,由于这种产品没有机械接点,不产生电磁噪声,从而不需要附加诸如电阻和电容等元件来保持静音。而传统继电器则需要这些附加元件,因此,传统继电器往往笨重而复杂,且成本较高。
今后,小型密封继电器市场开发的重点是与IC兼容的TO-5继电器和1/2晶体罩继电器。军用继电器将加速向工业/商业化转移。美国军用继电器约占继电器总额的20%。通用继电器市场继续向小型、薄型和塑封方向发展。小型印制板用继电器仍将是通用继电器市场发展的主流产品,固体继电器将更趋广泛,价格将继续下降,并向高可靠、小体积、高抗浪涌电流冲击和抗干扰性靠拢。舌簧继电器市场将继续扩大。表面安装继电器的应用领域和需求量将呈上升之势
继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。
二、继电器的继电特性继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。
释放值xf与动作值xx的比值叫做反馈系数,即
Kf= xf /xx
触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0
■继电器的分类■
继电器的分类方法较多,可以按作用原理、外形尺寸、保护特征、触点负载、产品用途等分类。
一、按作用原理分
1.电磁继电器
在输入电路内电流的作用下,由机械部件的相对运动产生预定响应的一种继电器。
它包括直流电磁继电器、交流电磁继电器、磁保持继电器、极化继电器、舌簧继电器,节能功率继电器。
(1)直流电磁继电器:输入电路中的控制电流为直流的电磁继电器。
(2)交流电磁继电器:输入电路中的控制电流为交流的电磁继电器。
(3)磁保持继电器:将磁钢引入磁回路,继电器线圈断电后,继电器的衔铁仍能保持在线圈通电时的状态,具有两个稳定状态。
(4)极化继电器:状态改变取决于输入激励量极性的一种直流继电器。
(5)舌簧继电器:利用密封在管内,具有触点簧片和衔铁磁路双重作用的舌簧的动作来开、闭或转换线路的继电器。
(6)节能功率继电器:输入电路中的控制电流为交流的电磁继电器,但它的电流大(一般30-100A),体积小, 节电功能.
2.固态继电器
输入、输出功能由电子元件完成而无机械运动部件的一种继电器。
3.时间继电器
当加上或除去输入信号时,输出部分需延时或限时到规定的时间才闭合或断开其被控线路的继电器。
4.温度继电器
当外界温度达到规定值时而动作的继电器.
5.风速继电器
当风的速度达到一定值时,被控电路将接通或断开。
6.加速度继电器
当运动物体的加速度达到规定值时,被控电路将接通或断开。
7.其它类型的继电器
如光继电器、声继电器、热继电器等。
二、按外形尺寸分
表1 继电器外形尺寸分类
名 称 定 义
微型继电器 最长边尺寸不大于10mm的继电器
超小型继电器 最长边尺寸大于10mm,但不大于25mm的继电器
小型继电器 最长边尺寸大于25mm,但不大于50mm的继电器
三、按触点负载分
表2 继电器触点负载分类
名 称 定 义
微功率继电器 小于0.2A的继电器。
弱功率继电器 0.2~2A的继电器。
中功率继电器 2~10A的继电器。
大功率继电器 10A以上继电器。
节能功率继电器 20A-100A的继电器
四、按防护特征分
表3 继电器防护特征分类
名 称 定 义
密封继电器 采用焊接或其它方法,将触点和线圈等密封在金属罩内,其泄漏率较低的继电器
塑封继电器 采用封胶的方法,将触点和线圈等密封在塑料罩内,其泄漏率较高的继电器
防尘罩继电器 用罩壳将触点和线圈等封闭加以防护的继电器
敞开继电器 不用防护罩来保护触点和线圈等的继电器
五、按用途分
表4 继电器用途分类
名 称 定 义
通讯继电器 (包括高频继电器) 该类继电器触点负载范围从低电平到中等电流,环境使用条件要求不高。
机床继电器 机床中使用的继电器,触点负载功率大,寿命长。
家电用继电器 家用电器中使用的继电器,要求安全性能好。
汽车继电器 汽车中使用的继电器,该类继电器切换负载功率大,抗冲、抗振性高。
[1]继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。
....继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。
....作为控制元件,概括起来,继电器有如下几种作用:
.....1) 扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。
.....2) 放大。例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。
.....3) 综合信号。例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。
.... 4) 自动、遥控、监测。例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。
工厂专业生产各式时间继电器 电磁继电器 电子继电器 大功率继电器 液位继电器 固态继电器 大功率继电器 小型继电器 计时器 计数器 继电器等。
继电器实质是一种传递信号的电器,它根据输入的信号达到不同的控制目的。
继电器一般是用来接通和断开控制电器(电动机)
如在直流电动机里的电流继电器,当电流过小或过大时,它检测到这种电流信号后便控制电动机的启停
还有如热继电器,如电动机长期过载而使温度过高时,它便控制电动机停止
1 按使用环境选型
... 使用环境条件主要指温度(最大与最小)、湿度(一般指40摄氏度下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。
... 对电磁干扰或射频干扰比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品。那些用固态器件或电路提供激励及对尖峰信号比较敏感地地方,也要选择有瞬态抑制电路的产品。
2 按输入信号不同确定继电器种类
... 按输入信号是电、温度、时间、光信号确定选用电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。
3 输入参量的选定
... 与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)/吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须处于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的1.5倍,工作值的误差一般为±10%。
4 根据负载情况选择继电器触点的种类和容量
... 国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。
... 触点组合形式和触点组数应根据被控回路实际情况确定。常用的触点组合形式见表6。动合触点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后补偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。
... 根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换负荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA、小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV、50μA以下负荷的继电器订货,用户需注明,必要时应请继电器生产厂协助选型。
... 继电器的触点额定负载与寿命是指在额定电压、电流下,负载为阻性的动作次数,当超出额定电压时,可参照触点负载曲线选用。当负载性质改变时,其触点负载能力将发生变用,用户可参照表8变换触点负载电流。
继电器的作用
继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。
继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。
作为控制元件,概括起来,继电器有如下几种作用:
扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。
放大。例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。
综合信号。例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。
自动、遥控、监测。例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。