【贪心算法】Huffman编码

问题描述

有一组字符集{c1, c2, …, cn},在使用这组字符集的过程中,通过统计发现每个字符都有其相应的出现频率,假设对应的频率为{f1, f2, …, fn}。现在需要对这些字符进行二进制编码,我们希望的编码结果如下:每个字符都有其独一无二的编码;编码长度是变长的,频率大的字符使用更少的二进制位进行编码,频率小的字符则使用比较多的二进制位进行编码,使得最终的平均编码长度达到最短;每个字符的编码都有特定的前缀,一个字符的编码不可能会是另一个字符的前缀,这样我们可以在读取编码时,当读取的二进制位可以对应一个字符时,就读取出该字符。举个例子,假如我们有字符集{‘a’, ‘b’, ‘c’},字符’a’的编码为001,字符’b’的编码为010,那么此时c的编码不能为00或者01,这样我们才能识别’a’和’c’或者’b’和’c’。

算法描述

上述问题可以使用Huffman编码来解决,Huffman编码实际上是一个贪心算法。在这个算法中,使用二叉树来表示前缀码,每个字符都是树的叶子结点,非叶子结点则不代表任何字符。将每个字符构造成结点形成结点集S,每次都从结点集S中选出频率最低的两个结点x和y作为子节点进行建树,为这两个子结点构造一个父节点,父节点不保存任何字符,父节点的频率为两个子节点频率之和,将两个子节点从S中移走,将父节点加入S中。不断迭代下去,直到S只剩一个结点时,这个结点就是树的根节点。这样我们就得到了一棵Huffman树,整个过程就是一个自底向上的建树过程。由于从根节点到每个叶子节点有且仅有一条路径,所以,每个叶子的路径都是不一样的,唯一的。我们把从根节点到叶子节点的路径记录下来,便可作为叶子节点上字符的编码。初始化编码为空,从根节点开始,往左走则编码加0,往右走则编码加1,具体展示图如下所示:

【贪心算法】Huffman编码_第1张图片

建树过程的伪代码如下:

给定字符集C={c1,c2,...,cn},每个字符ci都有相应的频率fi
根据字符集构建结点集S={s1,s2,...,sn},每个结点si保存有字符ci和频率fi的信息
while |S| != 1 do
  取出S中频率最小的两个结点x和y;
  构造父节点z;
  z.f = x.f + y.f;
  z.c = undefined;
  z.left = x;
  z.right = y;
  将x和y从S中移走,将z加入S;
endWhile
此时S[0]就是根节点,返回根节点

最后整个Huffman编码过程的C++实现如下(建树+编码):

#include 
#include 
#include 
#include 
using namespace std;

/* Huffman树的节点 */
struct Node {
  Node() {}
  Node(int frequency, char ch, Node* left, Node* right) {
    this->frequency = frequency;
    this->ch = ch;
    this->left = left;
    this->right = right;
  }
  int frequency;
  char ch;
  Node* left;
  Node* right;
};

class HuffmanCode {
public:
  HuffmanCode() {}
  ~HuffmanCode() {
    if (nvec.size() > 0)
      clear(nvec[0]);
  }

  /* 建树 */
  void buildTree(const char* ch, const int* fq, const int& size) {
    for (int i = 0; i < size; ++i) {
      Node* node = new Node(fq[i], ch[i], NULL, NULL);
      nvec.push_back(node);
    }
    while (nvec.size() != 1) {
      Node* x = getMinNodeAndRemoveIt();
      Node* y = getMinNodeAndRemoveIt();
      Node* z = new Node(x->frequency + y->frequency, '\0', x, y);
      nvec.push_back(z);
    }
  }

  /* 编码 */
  void buildCode() {
    buildCodeByDFS(nvec[0], "");
  }

  /* 获取特定字符的编码 */
  string getCode(char ch) { return code[ch]; }
private:
  /* 清空Huffman树,释放资源 */
  void clear(Node* root) {
    if (root != NULL) {
      clear(root->left);
      clear(root->right);
      delete root;
    }
  }

  /* 获取结点集中频率最小的结点并将其移出结点集 */
  Node* getMinNodeAndRemoveIt() {
    int min = 0;
    for (int i = 1; i < nvec.size(); ++i) {
      if (nvec[i]->frequency < nvec[min]->frequency) {
        min = i;
      }
    }
    Node* tmp = nvec[nvec.size() - 1];
    nvec[nvec.size() - 1] = nvec[min];
    nvec[min] = tmp;
    tmp = nvec[nvec.size() - 1];
    nvec.pop_back();
    return tmp;
  }

  /* 遍历Huffman树进行编码 */
  void buildCodeByDFS(Node* r, string str) {
    if (r->left == NULL && r->right == NULL)
      code[r->ch] = str;
    if (r->left != NULL)
      buildCodeByDFS(r->left, str + "0");
    if (r->right != NULL)
      buildCodeByDFS(r->right, str + "1");
  }

  vector nvec; // 结点集
  map<char, string> code; // 字符编码
};

int main() {
  char ch[100];
  int fq[100], size;
  cin >> size;
  if (size <= 0 || size > 100) {
    cout << "字符集大小不合适" << endl;
    return -1;
  }

  for (int i = 0; i < size; ++i) {
    cin >> ch[i] >> fq[i];
  }

  HuffmanCode hfmc;
  hfmc.buildTree(ch, fq, size);
  hfmc.buildCode();

  string code;
  for (int i = 0; i < size; ++i) {
    code = hfmc.getCode(ch[i]);
    cout << ch[i] << ": " << code << endl;
  }

  return 0;
}

你可能感兴趣的:(数据结构与算法)