数据结构与算法C++之堆排序

首先需要介绍一下一个新的数据结构:堆
堆使用了优先队列
普通队列:先进先出,后进后出
优先队列:出队顺序与入队顺序无关,与优先级有关,一般取出优先级最高的元素,堆入队出队的算法复杂度都为O(nlogn)
最常使用的是二叉堆(Binary Heap)
数据结构与算法C++之堆排序_第1张图片
如上图所示,62称为41和30的父节点,41称为左节点,30称为右节点,以此类推,41又是28和16的父节点,等等,二叉堆有如下性质:

  • 父节点大于左右子节点
  • 堆总是一棵完全二叉树,即最后一层上面的所有层都是完整的,即因为上图有四层,那么30一定同时存在左右节点,否则就不满足堆的性质,倒数第二层的父节点可以左右节点都没有,如22,也可以只有一个节点,但这个节点必须是左节点,如16
    用数组来存储二叉堆,如下图所示
    数据结构与算法C++之堆排序_第2张图片

习惯于将最上面的父节点62编号为1,然后从上到下,从左到右依次编号,因为编号从1开始,所以用来存储堆的数组需要10+1个存储空间

  • 定义某个节点 i i i 的父节点为 p a r e n t ( i ) = i / 2 parent(i)=i/2 parent(i)=i/2
  • 定义该节点 i i i 的左节点为 l e f t c h i l d ( i ) = 2 ∗ i left child (i) = 2*i leftchild(i)=2i
  • 定义该节点 i i i 的又节点为 r i g h t c h i l d ( i ) = 2 ∗ i + 1 right child (i) = 2*i + 1 rightchild(i)=2i+1

如节点4,它的值是28,他的父节点为 4 / 2 = 2 4/2 = 2 4/2=2,值是41
它的左节点为 2 ∗ 4 = 8 2*4 = 8 24=8,值是19
它的右节点为 2 ∗ 4 + 1 = 9 2*4 + 1 = 9 24+1=9, 值是17

Shift Up 堆中插入元素
数据结构与算法C++之堆排序_第3张图片
如上图所示,插入元素值为52

(1)首先将52插入堆的最后一个位置,编号为11
数据结构与算法C++之堆排序_第4张图片
(2)将52与其父节点16作比较,比16大,那么交换16和52的位置
数据结构与算法C++之堆排序_第5张图片
(3)将52再与其父节点41作比较,比41大,那么交换41和52的位置
数据结构与算法C++之堆排序_第6张图片
(4)将52再与新的父节点62作比较,比62小,那么插入操作结束
数据结构与算法C++之堆排序_第7张图片

Shift Down 堆中取出最大元素

(1)首先将最上面的父节点62取出
数据结构与算法C++之堆排序_第8张图片
(2)将最后一个节点16填补到最上面的位置,同时将堆的元素总数count减1
数据结构与算法C++之堆排序_第9张图片
(3)然后将父节点16与其他两个子节点52和30作比较,16比52小,那么交换16与52的位置
数据结构与算法C++之堆排序_第10张图片
(4)继续比较16与它的两个新的子节点28和41的大小,比41小,那么交换16和41的位置
数据结构与算法C++之堆排序_第11张图片
(4)继续比较16与其子节点15的大小,16比15大,那么不用交换位置,Shift Down结束
数据结构与算法C++之堆排序_第12张图片
下面就先使用ShiftUp和ShiftDown进行插入元素和取出元素

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#ifndef _SORTINGHELP_H_
#define _SORTINGHELP_H_
#include "SortingHelp.h"
#endif // _SORTINGHELP_H_

#include "MergeSorting.h"
#include "quickSorting.h"

using namespace std;

template<typename Item>
class MaxHeap{
private:
    Item *data;
    int count;
    int capacity;

    void ShiftUp(int k){
        while (data[k/2] < data[k] && k > 1){
            swap(data[k/2], data[k]);
            k /= 2;
        }
    }

    void ShiftDown(int k){
        while (k <= count/2){
            int j = 2*k; //此轮循环中,data[k]和data[j]交换位置
            if (data[j] < data[j+1] && j + 1 <= count)
                j += 1;
            if (data[k] >= data[j])
                break;

            swap(data[j], data[k]);
            k = j;
        }
    }

public:
    MaxHeap(int capacity){
        data = new Item[capacity + 1];
        count = 0;
        this->capacity = capacity;
    }

    ~MaxHeap(){
        delete[] data;
    }

    int size(){
        return count;
    }

    bool isEmpty(){
        return count == 0;
    }

    void insert(Item item){

        assert( count + 1 <= capacity );
        data[count+1] = item;
        count ++;
        ShiftUp(count);
    }

    Item extractMax(){
        assert( count > 0);

        Item ret = data[1];

        swap(data[1], data[count]);
        count --;
        ShiftDown(1);

        return ret;
    }

public:
    void testPrint(){ //打印堆函数,不用掌握

        if( size() >= 100 ){
            cout<<"Fancy print can only work for less than 100 int";
            return;
        }

        if( typeid(Item) != typeid(int) ){
            cout <<"Fancy print can only work for int item";
            return;
        }

        cout<<"The Heap size is: "<<size()<<endl;
        cout<<"data in heap: ";
        for( int i = 1 ; i <= size() ; i ++ )
            cout<<data[i]<<" ";
        cout<<endl;
        cout<<endl;

        int n = size();
        int max_level = 0;
        int number_per_level = 1;
        while( n > 0 ) {
            max_level += 1;
            n -= number_per_level;
            number_per_level *= 2;
        }

        int max_level_number = int(pow(2, max_level-1));
        int cur_tree_max_level_number = max_level_number;
        int index = 1;
        for( int level = 0 ; level < max_level ; level ++ ){
            string line1 = string(max_level_number*3-1, ' ');

            int cur_level_number = min(count-int(pow(2,level))+1,int(pow(2,level)));
            bool isLeft = true;
            for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index ++ , index_cur_level ++ ){
                putNumberInLine( data[index] , line1 , index_cur_level , cur_tree_max_level_number*3-1 , isLeft );
                isLeft = !isLeft;
            }
            cout<<line1<<endl;

            if( level == max_level - 1 )
                break;

            string line2 = string(max_level_number*3-1, ' ');
            for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index_cur_level ++ )
                putBranchInLine( line2 , index_cur_level , cur_tree_max_level_number*3-1 );
            cout<<line2<<endl;

            cur_tree_max_level_number /= 2;
        }
    }

private:
    void putNumberInLine( int num, string &line, int index_cur_level, int cur_tree_width, bool isLeft){

        int sub_tree_width = (cur_tree_width - 1) / 2;
        int offset = index_cur_level * (cur_tree_width+1) + sub_tree_width;
        assert(offset + 1 < line.size());
        if( num >= 10 ) {
            line[offset + 0] = '0' + num / 10;
            line[offset + 1] = '0' + num % 10;
        }
        else{
            if( isLeft)
                line[offset + 0] = '0' + num;
            else
                line[offset + 1] = '0' + num;
        }
    }

    void putBranchInLine( string &line, int index_cur_level, int cur_tree_width){

        int sub_tree_width = (cur_tree_width - 1) / 2;
        int sub_sub_tree_width = (sub_tree_width - 1) / 2;
        int offset_left = index_cur_level * (cur_tree_width+1) + sub_sub_tree_width;
        assert( offset_left + 1 < line.size() );
        int offset_right = index_cur_level * (cur_tree_width+1) + sub_tree_width + 1 + sub_sub_tree_width;
        assert( offset_right < line.size() );

        line[offset_left + 1] = '/';
        line[offset_right + 0] = '\\';
    }
};



int main(){
    MaxHeap<int> maxheap = MaxHeap<int>(100);
    srand(time(NULL));
    for (int i = 0; i < 10; i++){
        maxheap.insert(rand()%100);
    }
    maxheap.testPrint();
    return 0;
}

输出为
数据结构与算法C++之堆排序_第13张图片
取出元素测试程序为

int main(){
    MaxHeap<int> maxheap = MaxHeap<int>(100);
    srand(time(NULL));
    for (int i = 0; i < 10; i++){
        maxheap.insert(rand()%100);
    }
    //maxheap.testPrint();
    while(!maxheap.isEmpty()){
        cout<<maxheap.extractMax()<<" ";
    }
    cout<<endl;
    return 0;
}

输出为
在这里插入图片描述
下面使用堆实现排序
其实就是先将数组中元素挨个放入堆中,然后挨个将堆中元素取出来逆序再放入数组中就可以
首先将堆的实现放入 Heap.h 中

//Heap.h

#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;

template<typename Item>
class MaxHeap{
private:
    Item *data;
    int count;
    int capacity;

    void ShiftUp(int k){
        while (data[k/2] < data[k] && k > 1){
            swap(data[k/2], data[k]);
            k /= 2;
        }
    }

    void ShiftDown(int k){
        while (k <= count/2){
            int j = 2*k; //此轮循环中,data[k]和data[j]交换位置
            if (data[j] < data[j+1] && j + 1 <= count)
                j += 1;
            if (data[k] >= data[j])
                break;

            swap(data[j], data[k]);
            k = j;
        }
    }

public:
    MaxHeap(int capacity){
        data = new Item[capacity + 1];
        count = 0;
        this->capacity = capacity;
    }

    ~MaxHeap(){
        delete[] data;
    }

    int size(){
        return count;
    }

    bool isEmpty(){
        return count == 0;
    }

    void insert(Item item){

        assert( count + 1 <= capacity );
        data[count+1] = item;
        count ++;
        ShiftUp(count);
    }

    Item extractMax(){
        assert( count > 0);

        Item ret = data[1];

        swap(data[1], data[count]);
        count --;
        ShiftDown(1);

        return ret;
    }

public:
    void testPrint(){

        if( size() >= 100 ){
            cout<<"Fancy print can only work for less than 100 int";
            return;
        }

        if( typeid(Item) != typeid(int) ){
            cout <<"Fancy print can only work for int item";
            return;
        }

        cout<<"The Heap size is: "<<size()<<endl;
        cout<<"data in heap: ";
        for( int i = 1 ; i <= size() ; i ++ )
            cout<<data[i]<<" ";
        cout<<endl;
        cout<<endl;

        int n = size();
        int max_level = 0;
        int number_per_level = 1;
        while( n > 0 ) {
            max_level += 1;
            n -= number_per_level;
            number_per_level *= 2;
        }

        int max_level_number = int(pow(2, max_level-1));
        int cur_tree_max_level_number = max_level_number;
        int index = 1;
        for( int level = 0 ; level < max_level ; level ++ ){
            string line1 = string(max_level_number*3-1, ' ');

            int cur_level_number = min(count-int(pow(2,level))+1,int(pow(2,level)));
            bool isLeft = true;
            for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index ++ , index_cur_level ++ ){
                putNumberInLine( data[index] , line1 , index_cur_level , cur_tree_max_level_number*3-1 , isLeft );
                isLeft = !isLeft;
            }
            cout<<line1<<endl;

            if( level == max_level - 1 )
                break;

            string line2 = string(max_level_number*3-1, ' ');
            for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index_cur_level ++ )
                putBranchInLine( line2 , index_cur_level , cur_tree_max_level_number*3-1 );
            cout<<line2<<endl;

            cur_tree_max_level_number /= 2;
        }
    }

private:
    void putNumberInLine( int num, string &line, int index_cur_level, int cur_tree_width, bool isLeft){

        int sub_tree_width = (cur_tree_width - 1) / 2;
        int offset = index_cur_level * (cur_tree_width+1) + sub_tree_width;
        assert(offset + 1 < line.size());
        if( num >= 10 ) {
            line[offset + 0] = '0' + num / 10;
            line[offset + 1] = '0' + num % 10;
        }
        else{
            if( isLeft)
                line[offset + 0] = '0' + num;
            else
                line[offset + 1] = '0' + num;
        }
    }

    void putBranchInLine( string &line, int index_cur_level, int cur_tree_width){

        int sub_tree_width = (cur_tree_width - 1) / 2;
        int sub_sub_tree_width = (sub_tree_width - 1) / 2;
        int offset_left = index_cur_level * (cur_tree_width+1) + sub_sub_tree_width;
        assert( offset_left + 1 < line.size() );
        int offset_right = index_cur_level * (cur_tree_width+1) + sub_tree_width + 1 + sub_sub_tree_width;
        assert( offset_right < line.size() );

        line[offset_left + 1] = '/';
        line[offset_right + 0] = '\\';
    }
};

实现程序如下,程序中实现的快速排序与归并排序可以参考前几篇博客

#include 

#ifndef _SORTINGHELP_H_
#define _SORTINGHELP_H_
#include "SortingHelp.h"
#endif // _SORTINGHELP_H_

#include "MergeSorting.h"
#include "quickSorting.h"
#include "Heap.h"

using namespace std;


template<typename T>
void heapSorting1(T arr[], int n){
    MaxHeap<T> maxheap = MaxHeap<T>(n);
    for (int i = 0; i < n; i ++)
        maxheap.insert(arr[i]);

    for (int i = n - 1; i >=0; i--)
        arr[i] = maxheap.extractMax();
}

int main()
{
    //对普通的随机数组进行排序
    int n = 500000;
    int *arr = generateRandomArray(n, 0, n);
    int *arr2 = copyIntArray(arr, n);
    int *arr3 = copyIntArray(arr, n);
    cout<<"普通数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;

    //对近乎有序的数组进行排序
    arr = generateNearlyOrderedArray(n, 100);//生成只有200个无序元素的数组
    arr2 = copyIntArray(arr, n);
    arr3 = copyIntArray(arr, n);
    cout<<"近乎有序的数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;

    //对有大量重复元素的数组进行排序
    arr = generateRandomArray(n, 0, 10);
    arr2 = copyIntArray(arr, n);
    arr3 = copyIntArray(arr, n);
    cout<<"有大量重复元素的数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;
    return 0;
}

输出为
数据结构与算法C++之堆排序_第14张图片
可以看出堆排序要慢于归并排序和快速排序,但是计算复杂度也是在允许的范围内,数据结构堆主要用于数据的动态维护
Heapify
上面程序中是将数组元素一个个插入到堆中,如下

MaxHeap<T> maxheap = MaxHeap<T>(n);
for (int i = 0; i < n; i ++)
   maxheap.insert(arr[i]);

其实还有更好的方式,即 Heapify

(1)首先将数组按顺序放入堆中,如下图所示,此时是不满足堆的性质的
数据结构与算法C++之堆排序_第15张图片
(2)可以看出所有的叶子节点都是满足堆的性质的,即30,41,62,16,28
数据结构与算法C++之堆排序_第16张图片
(3)第一个非叶子节点的编号为 c o u n t / 2 count / 2 count/2,也就是 10 / 2 = 5 10/2=5 10/2=5也就是编号为5的22
数据结构与算法C++之堆排序_第17张图片
(5)找到第一个非叶子节点5后,按照5,4,3,2,1的顺序不断对他们进行ShiftDown即可,比如22比其子节点62小,那么交换22和62的位置,然后比较13和子节点30和41的大小,13比41小,交换13和41的位置,然后比较19和子节点16,28的大小,交换19和28的位置,然后比较17和子节点62,41的大小,交换17和62的位置,17继续和他的子节点比较,17比22小,那么继续交换位置,以此类推,最后就可将元素都放入正确的位置
数据结构与算法C++之堆排序_第18张图片
程序实现如下,函数取名为 heapSorting2()
首先在Heap.h中添加构造函数MaxHeap(Item arr[], int n)

//Heap.h
MaxHeap(Item arr[], int n){
    data = new Item[n+1];
    capacity = n;
    for (int i = 0; i < n; i ++)
        data[i+1] = arr[i];
    count = n;
    for (int i = count / 2; i >= 1; i--)
        ShiftDown(i);
}

测试程序为

#include 

#ifndef _SORTINGHELP_H_
#define _SORTINGHELP_H_
#include "SortingHelp.h"
#endif // _SORTINGHELP_H_

#include "MergeSorting.h"
#include "quickSorting.h"
#include "Heap.h"

using namespace std;


template<typename T>
void heapSorting1(T arr[], int n){
    MaxHeap<T> maxheap = MaxHeap<T>(n);
    for (int i = 0; i < n; i ++)
        maxheap.insert(arr[i]);

    for (int i = n - 1; i >=0; i--)
        arr[i] = maxheap.extractMax();
}

//Heapify
template<typename T>
void heapSorting2(T arr[], int n){

    MaxHeap<T> maxheap = MaxHeap<T>(arr, n);

    for (int i = n - 1; i >=0; i--)
        arr[i] = maxheap.extractMax();
}

int main()
{
    //对普通的随机数组进行排序
    int n = 500000;
    int *arr = generateRandomArray(n, 0, n);
    int *arr2 = copyIntArray(arr, n);
    int *arr3 = copyIntArray(arr, n);
    int *arr4 = copyIntArray(arr, n);
    cout<<"普通数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    testSorting("heapSorting2", heapSorting2, arr4, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;

    //对近乎有序的数组进行排序
    arr = generateNearlyOrderedArray(n, 100);//生成只有200个无序元素的数组
    arr2 = copyIntArray(arr, n);
    arr3 = copyIntArray(arr, n);
    arr4 = copyIntArray(arr, n);
    cout<<"近乎有序的数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    testSorting("heapSorting2", heapSorting2, arr4, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;

    //对有大量重复元素的数组进行排序
    arr = generateRandomArray(n, 0, 10);
    arr2 = copyIntArray(arr, n);
    arr3 = copyIntArray(arr, n);
    arr4 = copyIntArray(arr, n);
    cout<<"有大量重复元素的数组进行排序"<<endl;
    testSorting("MergeSorting", MergeSorting, arr, n);
    testSorting("quickSorting2", quickSorting2, arr2, n);
    testSorting("heapSorting1", heapSorting1, arr3, n);
    testSorting("heapSorting2", heapSorting2, arr4, n);
    delete[] arr;//最后删除数组开辟的空间
    delete[] arr2;
    delete[] arr3;
    delete[] arr4;


    return 0;
}

输出为
数据结构与算法C++之堆排序_第19张图片
可以看出使用Heapify来将数组构造成堆后,时间变短了

  • 将n个元素逐个插入到一个空堆中,算法复杂度为O(nlogn)
  • heapify的过程,算法复杂度为O(n)

你可能感兴趣的:(数据结构与算法)