【BZOJ1835】基站选址(线段树)

题面

BZOJ

题解

考虑一个比较暴力的 dp

f[i][j] 表示建了 i 个基站,最后一个的位置是 j 的最小代价

考虑如何转移 f[i][j]=min(f[i1][p]+Cost(p+1,j)+C[j])

其中 Cost 表示代价,也就是区间内所有没有被覆盖的村庄的 W 的和

如果直接暴力 dp ,复杂度 O(n2k) ,这个复杂度还假设了 Cost O(1) 计算的

转移的时候是枚举建造的个数,显然还可以滚调第一维

但是这个复杂度我们无法接受,我们要思考有没有更快的方法

考虑 dp 的转移式子

f[i][j]=min(f[i1][p]+Cost(p+1,j)+C[j])

f[i][j]=min(f[i1][p]+Cost(p+1,j))+C[j]

相当于我们要找到的就是 min(f[i1][p]+Cost(p+1,j))

我们不难知道,如果一个村庄不需要贡献他的 W

那么,必须在一个区间内存在一个基站

所以,这个区间我们可以提前预处理出来(二分一下)

然后按照右端点排序,按照右端点结束的位置分类

从左到右这样扫过来,如果过了某个右端点

此时,这些区间的最右端在当前位置的那些村落,

在后面的 dp 中必然产生贡献,

会对 [1,left1] 的所有区间都产生 W 的贡献

因此在线段树上做一次区间加法

每次进行转移的时候从所有的位置中选出区间最小值就行了

然后 K 增大,重构线段树即可

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define RG register
#define ll long long
#define MAX 30000
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int f[MAX];
struct Node{int v,tag;}t[MAX<<2];
struct Seg{int l,r;}p[MAX];
vector<int> V[MAX];
int n,K,W[MAX],S[MAX],d[MAX],C[MAX],ans=2e9;
void Build(int now,int l,int r)
{
    t[now].tag=0;
    if(l==r){t[now].v=f[l];return;}
    int mid=(l+r)>>1;
    Build(lson,l,mid);Build(rson,mid+1,r);
    t[now].v=min(t[lson].v,t[rson].v);
}
void puttag(int now,int w){t[now].v+=w;t[now].tag+=w;}
void pushdown(int now)
{
    puttag(lson,t[now].tag);
    puttag(rson,t[now].tag);
    t[now].tag=0;
}
void Modify(int now,int l,int r,int L,int R,int w)
{
    if(L>R)return;
    if(L<=l&&r<=R){puttag(now,w);return;}
    pushdown(now);
    int mid=(l+r)>>1;
    if(L<=mid)Modify(lson,l,mid,L,R,w);
    if(R>mid)Modify(rson,mid+1,r,L,R,w);
    t[now].v=min(t[lson].v,t[rson].v);
}
int Query(int now,int l,int r,int L,int R)
{
    if(L>R)return 0;
    if(L<=l&&r<=R)return t[now].v;
    pushdown(now);
    int mid=(l+r)>>1,ret=2e9;
    if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
    if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
    return ret;
}
int main()
{
    n=read();K=read();
    for(int i=2;i<=n;++i)d[i]=read();
    for(int i=1;i<=n;++i)C[i]=read();
    for(int i=1;i<=n;++i)S[i]=read();
    for(int i=1;i<=n;++i)W[i]=read();
    for(int i=1,l,r,pos;i<=n;++i)
    {
        l=1,r=i-1,pos=i;
        while(l<=r)
        {
            int mid=(l+r)>>1;
            if(d[i]-d[mid]>S[i])l=mid+1;
            else pos=mid,r=mid-1;
        }
        p[i].l=pos;
        l=i+1,r=n,pos=i;
        while(l<=r)
        {
            int mid=(l+r)>>1;
            if(d[mid]-d[i]>S[i])r=mid-1;
            else pos=mid,l=mid+1;
        }
        p[i].r=pos;
    }
    for(int i=1;i<=n;++i)
        V[p[i].r].push_back(i);
    for(int i=1,tmp=0;i<=n+1;++i)
    {
        f[i]=tmp+C[i];
        for(int j=0;j1];
    for(int i=1;i<=K;++i)
    {
        Build(1,1,n+1);
        for(int j=1;j<=n+1;++j)
        {
            f[j]=Query(1,1,n+1,1,j-1)+C[j];
            for(int k=0;k1,1,n+1,1,p[V[j][k]].l-1,W[V[j][k]]);
        }
        ans=min(ans,f[n+1]);
    }
    printf("%d\n",ans);
    return 0;
}

你可能感兴趣的:(BZOJ,各省省选,线段树)