本文主要是自己理解的记录,方便以后回顾时不是从头开始看,如果你有幸看到这篇文章并且对你有些许帮助,我很荣幸,如果没有帮助也感谢你的浏览。
首先介绍怎么运行,边运行边查看输出可以方便理解代码,创建tmp文件夹,加入以下三个文件:text.txt,output.txt,vocab.txt,是运行时必须指定的参数。
text.txt中为训练文本,随便找的文本
写诗做文章都是千古之事,而其中甘苦得失只有作者自己心里知道。
各位作者都是不同地位的人,怎么会空有虚名呢?这两句话表达杜甫晚年对诗歌创作的见解,带有总结性质。
上句“千古事”是指留传久远,关系重大,下句“寸心知”是说对于文章,作者本人的理解感知最为明白。
这两句诗虽是以议论入诗,但对仗工整,语言高度概括,而且切中肯綮,含蕴丰富,很有哲理性。
vocab.txt 可以从Google发布的中文模型中解压缩找到。
output.txt为必须制定的输出目录
python create_pretraining_data.py --input_file=tmp/text.txt --output_file=tmp/output.txt --vocab_file=tmp/vocab.txt
flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")
flags.DEFINE_string(
"output_file", None,
"Output TF example file (or comma-separated list of files).")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
flags.DEFINE_integer("max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence.")
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
flags.DEFINE_integer(
"dupe_factor", 10,
"Number of times to duplicate the input data (with different masks).")
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
flags.DEFINE_float(
"short_seq_prob", 0.1,
"Probability of creating sequences which are shorter than the "
"maximum length.")
class TrainingInstance(object):
"""A single training instance (sentence pair)."""
# 初始化
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
is_random_next):
self.tokens = tokens
self.segment_ids = segment_ids
self.is_random_next = is_random_next
self.masked_lm_positions = masked_lm_positions
self.masked_lm_labels = masked_lm_labels
# 字符串化
def __str__(self):
s = ""
s += "tokens: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.tokens]))
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
s += "is_random_next: %s\n" % self.is_random_next
s += "masked_lm_positions: %s\n" % (" ".join(
[str(x) for x in self.masked_lm_positions]))
s += "masked_lm_labels: %s\n" % (" ".join(
[tokenization.printable_text(x) for x in self.masked_lm_labels]))
s += "\n"
return s
def __repr__(self):
return self.__str__()
def write_instance_to_example_files(instances, tokenizer, max_seq_length,
max_predictions_per_seq, output_files):
"""Create TF example files from `TrainingInstance`s."""
writers = []
for output_file in output_files:
writers.append(tf.python_io.TFRecordWriter(output_file))
writer_index = 0
total_written = 0
for (inst_index, instance) in enumerate(instances):
# 将字通过vocan.txt 转换为id 具体看tokenizer.py
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
input_mask = [1] * len(input_ids)
segment_ids = list(instance.segment_ids)
assert len(input_ids) <= max_seq_length
# 小于最大序列长度补0
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
masked_lm_positions = list(instance.masked_lm_positions)
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
masked_lm_weights = [1.0] * len(masked_lm_ids)
while len(masked_lm_positions) < max_predictions_per_seq:
masked_lm_positions.append(0)
masked_lm_ids.append(0)
masked_lm_weights.append(0.0)
next_sentence_label = 1 if instance.is_random_next else 0
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["input_mask"] = create_int_feature(input_mask)
features["segment_ids"] = create_int_feature(segment_ids)
features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
features["next_sentence_labels"] = create_int_feature([next_sentence_label])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writers[writer_index].write(tf_example.SerializeToString())
writer_index = (writer_index + 1) % len(writers)
total_written += 1
if inst_index < 20:
tf.logging.info("*** Example ***")
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in instance.tokens]))
for feature_name in features.keys():
feature = features[feature_name]
values = []
if feature.int64_list.value:
values = feature.int64_list.value
elif feature.float_list.value:
values = feature.float_list.value
tf.logging.info(
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))
for writer in writers:
writer.close()
tf.logging.info("Wrote %d total instances", total_written)
把格式好的用于训练的数据写入tfrecord文件中,这个方法的主要作用就是把已经处理好的数据写入二进制文件中
def create_int_feature(values):
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return feature
def create_float_feature(values):
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return feature
创建不同的训练特征,主要将预处理好的数据转为Tensorflow中的格式
def create_training_instances(input_files, tokenizer, max_seq_length,
dupe_factor, short_seq_prob, masked_lm_prob,
max_predictions_per_seq, rng):
"""Create `TrainingInstance`s from raw text."""
all_documents = [[]]
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
# 每行是一个文档中的一句话,凭借这个来进行下一句预测的任务
# 文档之间间隔一个空行, 因为下一个预测不跨文档
# all_documents最后形成三维数组, 每句形成一个一维数组, 每个段落中的每句放在一维中, 每个段落放
# 在一维中
for input_file in input_files:
with tf.gfile.GFile(input_file, "r") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line = line.strip()
# Empty lines are used as document delimiters
if not line:
all_documents.append([])
tokens = tokenizer.tokenize(line)
if tokens:
all_documents[-1].append(tokens)
# Remove empty documents
all_documents = [x for x in all_documents if x]
rng.shuffle(all_documents)
vocab_words = list(tokenizer.vocab.keys())
instances = []
# dupe_factor默认值是10, 复制输入数据的次数, 相同的数据形成不同的掩码, 增加实例用于训练
for _ in range(dupe_factor):
for document_index in range(len(all_documents)):
instances.extend(
create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
rng.shuffle(instances)
print('instances', len(instances))
return instances
def create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
"""Creates `TrainingInstance`s for a single document."""
# document 相当于单个段落
document = all_documents[document_index]
# Account for [CLS], [SEP], [SEP]
# 为了加入 [CLS], [SEP], [SEP] 所以长度减3
max_num_tokens = max_seq_length - 3
# 大部分情况下,我们希望把长度填充到最大长度,但是一少部分情况下我们希望采用短句来最小化预训练
# 和微调的差异。总的来说 target_seq_length 是一个粗略的目标,而 max_seq_length是一个强制的限制。
target_seq_length = max_num_tokens
if rng.random() < short_seq_prob:
target_seq_length = rng.randint(2, max_num_tokens) #生成随机数
instances = []
current_chunk = []
current_length = 0
i = 0
while i < len(document):
segment = document[i] # segment是一个句子列表
current_chunk.append(segment)
current_length += len(segment)
# i == len(document) - 1 为了将本段落的所有segment 都加入current_chunk中再往下执行
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
# 随机生成1到len(current_chunk)-1的随机数
a_end = rng.randint(1, len(current_chunk) - 1)
# tokens_a 表示将文档中前a_end 个句子加入tokens_a中
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
# tokens_b 如果当前文档(段落)如果只有一个句子,随机填充一个句子作为下一个句子预测
# 如果不是一个句子将 a_end到len(current_chunk) - 1 加到tokens_b中
# 还有随机概率小于0.5的情况
tokens_b = []
# Random next
# 如果is_random_next为True 训练时转化为0, False 转化为1
is_random_next = False
# 如果只有一个句子或者随机概率小于0.5 随机填充下一个句子
if len(current_chunk) == 1 or rng.random() < 0.5:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# 从总文档中随机填充一个
for _ in range(10):
random_document_index = rng.randint(0, len(all_documents) - 1)
if random_document_index != document_index:
break
random_document = all_documents[random_document_index]
random_start = rng.randint(0, len(random_document) - 1)
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
# 将一对序列截断到最大序列长度, tokens_a, tokens_b 是当前所有文档总数(文档是当前段落)
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
assert len(tokens_a) >= 1
assert len(tokens_b) >= 1
# 下边几行看过论文的很好理解
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
# tokens [CLS] 各 位 作 者 都 是 不 同 地 位 [MASK] 人 , 怎 么 会 空 有 虚 名 呢 ? [SEP] 这 两 句 [MASK] 虽 [MASK] 以 议 论 入 诗 , 但 对 仗 工 整 , [MASK] 言 [MASK] 度 概 括 , 而 且 [MASK] [MASK] 肯 [MASK] , 含 蕴 丰 富 , 很 有 哲 理 性 。 [SEP]
# masked_lm_positions tokens中每个词在vocabt.txt 中位置
# masked_lm_labels 是每个MASK掉的词
(tokens, masked_lm_positions,
masked_lm_labels) = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
instance = TrainingInstance(
tokens=tokens,
segment_ids=segment_ids,
is_random_next=is_random_next,
masked_lm_positions=masked_lm_positions,
masked_lm_labels=masked_lm_labels)
instances.append(instance)
current_chunk = []
current_length = 0
i += 1
return instances
def create_masked_lm_predictions(tokens, masked_lm_prob,
max_predictions_per_seq, vocab_words, rng):
"""Creates the predictions for the masked LM objective."""
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indexes.append(i)
rng.shuffle(cand_indexes)
output_tokens = list(tokens)
num_to_predict = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
if index in covered_indexes:
continue
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if rng.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if rng.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_positions = []
masked_lm_labels = []
for p in masked_lms:
masked_lm_positions.append(p.index)
masked_lm_labels.append(p.label)
# output_tokens, mask后的序列, masked_lm_positions,masked的位置
# masked_lm_labels masked后的真实字
return (output_tokens, masked_lm_positions, masked_lm_labels)
选择字符用[MASK]进行替换,调整数据格式,返回。
# 将一对序列截断到最大序列长度
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
assert len(trunc_tokens) >= 1
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if rng.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
input_files = [] # 输入文件列表
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Reading from input files ***")
for input_file in input_files:
tf.logging.info(" %s", input_file)
rng = random.Random(FLAGS.random_seed)
instances = create_training_instances(
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
rng)
output_files = FLAGS.output_file.split(",")
tf.logging.info("*** Writing to output files ***")
for output_file in output_files:
tf.logging.info(" %s", output_file)
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq, output_files)
加载输入数据,处理成制定格式,存入二进制输出文件中。
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("output_file")
flags.mark_flag_as_required("vocab_file")
tf.app.run()
定义必须的函数并运行。