光流的基本概念

**

光流

**
光流(optical flow)法是目前运动图像分析的重要方法,它的概念是由 James J. Gibson于20世纪40年代首先提出的,指时变图像中模式运动速度。因为当物体在运动时,它在图像上对应点的亮度模式也在运动

简介

这种图像亮度模式的表观运动(apparent motion)就是光流。光流表达了图像的变化,由于它包含了目标运动的信息,因此可被观察者用来确定目标的运动情况。 由光流的定义可以引申出光流场,它是指图像中所有像素点构成的一种二维(2D)瞬时速度场,其中的二维速度矢量是景物中可见点的三维速度矢量在成像表面的投影。所以光流不仅包含了被观察物体的运动信息,而且还包含有关景物三维结构的丰富信息。 对光流的研究成为计算机视觉及有关研究领域中的一个重要部分。因为在计算机视觉中,光流扮演着重要角色,在目标对象分割、识别、跟踪、机器人导航以及形状信息恢复等都有着非常重要的应用。从光流中恢复物体三维结构和运动则是计算机视觉研究所面临的最富有意义和挑战性的任务之一。正是由于光流的这种重要地位和作用,使得众多的心理物理学家、生理学家和工程研究人员都加入了它的研究行列。十多年来,他们提出了许多种计算光流的方法,而且新的方法还在不断涌现。

图像处理

图像处理是指对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术。图像处理是信号处理在图像领域上的一个应用。目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。

计算机视觉

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。
作为一门科学学科,计算机视觉研究相关的理论和技术,试图创建能够从图像或者多维数据中获取“信息”的人工智能系统。这里所指的信息指香农定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。
作为一个工程学科,计算机视觉寻求基于相关理论与模型来创建计算机视觉系统。这类系统的组成部分包括:
过程控制(例如工业机器人和无人驾驶汽车)
事件监测(例如图像监测)
信息组织(例如图像数据库和图像序列的索引创建)
物体与环境建模(例如工业检查,医学图像分析和拓扑建模)
交感互动(例如人机互动的输入设备)
计算机视觉同样可以被看作是生物视觉的一个补充。在生物视觉领域中,人类和各种动物的视觉都得到了研究,从而创建了这些视觉系统感知信息过程中所使用的物理模型。另一方面,在计算机视觉中,靠软件和硬件实现的人工智能系统得到了研究与描述。生物视觉与计算机视觉进行的学科间交流为彼此都带来了巨大价值。
计算机视觉包含如下一些分支:画面重建,事件监测,目标跟踪,目标识别,机器学习,索引创建,图像恢复等。

一些求光流的方法

  • 相位相关
  • 块相关(误差绝对值和, 标准化互相关)
  • 梯度约束-相关的对齐
  • 卢卡斯-卡纳德方法(Lucas-Kanade Method)
  • 霍恩·山克方法(Horn Schunck Method)

你可能感兴趣的:(光流)