大数据学习(一)完整的大数据知识体系,大数据学习路线图

将给各位大佬分享真正关于大数据的干货,小编目前也在学习中,希望和大家共勉吧!

大数据学习(一)完整的大数据知识体系,大数据学习路线图_第1张图片

 

大数据的话题近几年是越来越火了,马云曾说:21世纪的竞争是数据的竞争,谁掌握数据,谁就掌握未来!多么痛的领悟。大数据是一个很庞大的只是体系,学习的过程很枯燥,需要大量的练习、记忆、思考,我也没想着在十天半个月给大家分享完它,因为我没这个能力,但是只要坚持,付出和回报总是成正比的。

大数据是什么

大数据 = 编程技巧 + 数据结构和算法 + 分析能力 + 数据库技能 + 数学 + 机器学习 + NLP + OS + 密码学 + 并行编程

不要看他涵盖的领域非常多,我们作为一个普通人,只要学懂并精于某一个模块,就足以有自己的立身之地。

互联网科技发展蓬勃兴起,人工智能时代来临,抓住下一个风口。为帮助那些往想互联网方向转行想学习,却因为时间不够,资源不足而放弃的人。我自己整理的一份最新的大数据进阶资料和高级开发教程,大数据学习群:199加上【427】最后加上210就可以找到组织学习  欢迎进阶中和进想深入大数据的小伙伴加入。

任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。大数据所需学习的内容纷繁复杂,难度较大,有一个合理的大数据学习路线图帮忙理清思路就显得尤为必要。

大数据学习(一)完整的大数据知识体系,大数据学习路线图_第2张图片

 

一、Java语言以java语言为基础掌握面向对象编程思想所涉及的知识,以及该知识在面向对象编程思想中的应用,培养学生设计程序的能力。掌握程度:精通。

二、数据结构与算法掌握基于JAVA语言的底层数据结构和算法原理,并且能够自己动手写出来关于集合的各种算法和数据结构,并且了解这些数据结构处理的问题和优缺点。掌握程度:熟练。

三、数据库原理与MYSQL数据库掌握关系型数据库的原理,掌握结构化数据的特性。掌握关系型数据库的范式。通过MYSQL数据库掌握通过SQL语言与MYSQL数据库进行交互。熟练掌握各种复杂SQL语句的编写。掌握程度:熟练。

四、LINUX操作系统全面了解LINUX。详解LINUX下的管理命令、用户管理、网络配置管理等。掌握SHELL脚本编程,能够根据具体业务进行复杂SHELL脚本的编写。掌握程度:精通。

五、Hadoop技术学习Hadoop技术的两个核心:分布式文件系统HDFS和分布式计算框架MapReduce。掌握MR的运行过程及相关原理,精通各种业务的MR程序编写。掌握Hadoop的核心源码及实现原理。掌握使用Hadoop进行海量数据的存储、计算与处理。掌握程度:精通。

六、分布式数据库技术:精通分布式数据库HBASE、掌握Mongodb及了解其它分布式数据库技术。精通分布式数据库原理、应用场景、HBASE数据库的设计、操作等,能结合HIVE等工具进行海量数据的存储于检索。掌握程度:精通。

七、数据仓库HIVE精通基于hadoop的数据仓库HIVE。精通HIVESQL的语法,精通使用HIVESQL进行数据操作。内部表、外部表及与传统数据库的区别,掌握HIVE的应用场景及Hive与HBase的结合使用。掌握程度:精通。

八、PYTHON语言精通PYTHON语言基础语法及面向对象。精通PYTHON语言的爬虫、WEB、算法等框架。并根据业务可以基于PYTHON语言开发完成的业务功能和系统。掌握程度:精通。

九、机器学习算法熟练掌握机器学习经典算法,掌握算法的原理,公式,算法的应用场景。熟练掌握使用机器学习算法进行相关数据的分析,保证分析结果的准确性。掌握程度:熟练。

十、Spark高级编程技术掌握Spark的运行原理与架构,熟悉Spark的各种应用场景,掌握基于SparkRDD的各种算子的使用;精通SparkStreaming针对流处理的底层原理,熟练应用SparkSql对各种数据源处理,熟练掌握Spark机器学习算法库。达到能够在掌握Spark的各种组件的基础上,能够构建出大型的离线或实时的业务项目。掌握程度:精通。

十一、真实大数据项目实战通过几个真实的大数据项目把之前学习的知识与大数据技术框架贯穿,学习真实的大数据项目从数据采集、清洗、存储、处理、分析的完整过程,掌握大数据项目开发的设计思想,数据处理技术手段,解决开发过程中遇到的问题和技术难点如何解决。

学习可分为以几个阶段:

阶段一:java基础

java是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。如果您有一定的java基础,可以忽略此步,如果您没有接触过编程语言,也不要太担心,可以从网站 W3C 上一步一步来,也可以在网上找到一些比较好的博客,重要的是要有恒心,想想迎娶白富美,走向人生巅峰,这点苦是个啥。

 

 

下面给出java我们到底学什么:

1、Java编程语言(新版)
2、Java进阶之设计模式
3、J2SE核心开发实战
4、JDK 核心 API
5、JDBC 入门教程
6、java 8 新特性指南

阶段二:linux基础

在学习之前需要先掌握基本的数据库知识。比如 MySQL、MongoDB、Redis,关于这些的学习,W3C值得你信赖。大家访问一下就知道了,千万不要爱的不能自拔。

 

 

下面给出linux我们到底学什么:

1、Linux 基础入门(新版)
2、Vim编辑器
3、Git 实战教程
4、MySQL 基础课程
5、MongoDB 基础教程
6、Redis基础教程

阶段三:Scala基础

还是那句话,W3C值得你信赖,千万不要爱的不能自拔。(PS:说实话,这一部分我现在还在学习的初级阶段,如果有哪位大佬看到这篇分享,可以好好指点我一下,先在此谢过)

 

 

下面给出scala我们到底学什么:

1、Scala 开发教程
2、Scala 专题教程 - Case Class和模式匹配
3、Scala 专题教程 - 隐式变换和隐式参数
4、Scala 专题教程 - 抽象成员
5、Scala 专题教程 - Extractor

阶段四:Hadoop技术模块

Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。要学习hadoop,我们首先的了解一下他的生态系统有哪些,先从整体上把控他,当然要记得W3C哦!

 

 

下面给出hadoop我们到底学什么:

1、Hadoop入门进阶课程 
2、Hadoop部署及管理 
3、HBASE 教程 
4、Hadoop 分布式文件系统--导入和导出数据 
5、使用 Flume 收集数据

好了,先分享大数据学习的这四个阶段,如果真的想学习的大佬,就做好被折磨的准备,然后征服它,驾驭它

你可能感兴趣的:(大数据学习,编程语言,数据分析,大数据开发,大数据技术,Hadoop,程序员,大数据知识)