- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- OpenVINO™2025部署PaddleOCR模型
OpenVINO 中文社区
经验分享
PaddleOCR模型下载OpenVINO™2025支持直接加载paddle的模型。所以可以直接先从官网直接下载PaddleOCRv5.0的模型:文本检测模型下载地址#DownloadandunzipPP-OCRv5_server_detpre-trainedmodelhttps://paddle-model-ecology.bj.bcebos.com/paddlex/official_infer
- 借力 提示词检索解码与 OpenVINO™ GenAI 全面提升 LLM 推理
OpenVINO 中文社区
经验分享
大语言模型(LLM)彻底改变了自然语言处理,推动了聊天机器人、摘要和内容生成等应用的发展。然而,推理效率依然是一个关键挑战,尤其在需要低延迟响应的场景下更为突出。试想你在一家餐厅,经常点同样的菜。服务员不必每次都询问你的订单再传达给厨房,而是直接认出你常点的菜品并立即上菜,这样既缩短了等待时间,也加快了整个服务流程。同样,在文本生成中,模型常常遇到输入提示中的重复模式。与每次都从零开始生成toke
- 聚焦OpenVINO与OpenCV颜色通道转换的实践指南
颜色通道顺序问题:OpenVINO模型RGB输入与OpenCVBGR格式的转换在计算机视觉任务中,框架间的颜色通道差异常导致模型推理错误。以下方法解决OpenVINO模型需要RGB输入而OpenCV默认输出BGR的问题。理解核心差异OpenCV的imread()函数遵循BGR通道顺序,源于历史摄像头硬件的数据格式。而OpenVINO等深度学习框架多采用RGB顺序,与TensorFlow/PyTor
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- C++、OpenVINO部署YOLOv5模型的指南(Windows)
马里马里奥-
c++openvinoopencv
C++、OpenVINO部署YOLOv5模型的指南(Windows)一、环境准备硬件要求软件配置二、模型转换流程1.导出ONNX模型2.转换为OpenVINOIR格式三、C++推理实现核心代码结构后处理关键算法四、性能优化技巧五、常见问题解答1:输出形状不匹配2:推理速度不达标六、部署效果展示七、结语一、环境准备硬件要求Intel第6代以上CPU16GB内存50GB可用磁盘空间软件配置Visual
- 转换PP-OCRv5模型为OpenVINO格式的详细指南
mingo_敏
OpenVINOopenvino人工智能
转换PP-OCRv5模型为OpenVINO格式的详细指南一、引言PP-OCRv5是百度飞桨推出的高性能OCR(光学字符识别)模型,在文本检测和识别任务中表现出色。整体识别精度相比上一代提升13个百分点。OpenVINO则是英特尔推出的开源深度学习推理框架,能显著优化模型在英特尔硬件上的推理性能。本文将详细介绍如何将PP-OCRv5模型转换为OpenVINO格式(.xml和.bin文件),并实现高效
- openvino系列 10. Model Optimizer:TensorFlow pb 模型转化 IR 模型
破浪会有时
openvino案例分析openvino机器学习
openvino系列10.ModelOptimizer:TensorFlowpb模型转化IR模型本章节将介绍OpenVINOModelOptimizer模块,以及如何将TensorFlowpb模型转化为IR模型(mo--input_model.pb)。环境描述:本案例运行环境:Win10,10代i5笔记本IDE:VSCodeopenvino版本:2022.1代码链接,4-model-optimiz
- AIxBoard部署BLIP模型进行图文问答
vslyu
深度学习openvino
一、AIxBoard简介AIxBoard(X板)是一款IA架构的人工智能嵌入式开发板,体积小巧功能强大,可让您在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。它是一款面向专业创客、开发者的功能强大的小型计算机,借助OpenVINO工具套件,CPU、iGPU都具备强劲的AI推理能力,基于AI的产品进行原型设计并将其快速推向市场的理想解决方案。二、多模态模型简介近年来,计算机视觉和自
- 基于Win在VSCode部署运行OpenVINO模型
LuvLife
openvino人工智能深度学习计算机视觉
一、准备工作1、Python下载Win平台的Python安装包,添加环境变量,测试:python--version在VSCode里(Ctrl+Shift+P打开命令面板),指定Python解释器为上面安装路径。写一个python脚本运行测试。2、虚拟环境在Windows系统下使用Python虚拟环境(VirtualEnvironment)可以有效隔离不同项目的依赖,避免版本冲突。在项目文件夹中新建
- 【哪吒开发板试用】(一)开发板开箱+Ubuntu22.04系统安装
EtAiors
哪吒开发套件
7月底在我颜导的群里看到了2024Intel®“走近开发者”互动活动,刚好最近项目在尝试使用OpenVINO进行部署,便申请了一张哪吒开发板试用,提交申请一两周收到官方初选通过的邮件,三天后开发板就通过顺丰快递到了我的手上,速度还是很快的。开发板介绍哪吒(Nezha)开发套件以信用卡大小(85x56mm)的开发板-哪吒(Nezha)为核心,采用英特尔®处理器N97(AlderLake-N),结合了
- YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】
你的陈某某
YOLOopenvino人工智能YOLOv8关键点检测
纯检测系列:YOLOv5-Openvino和ONNXRuntime推理【CPU】YOLOv6-Openvino和ONNXRuntime推理【CPU】YOLOv8-Openvino和ONNXRuntime推理【CPU】YOLOv7-Openvino和ONNXRuntime推理【CPU】YOLOv9-Openvino和ONNXRuntime推理【CPU】跟踪系列:YOLOv5/6/7-Openvino
- ANOMALIB第一章:安装
chonpsk
anomalibpythonpytorch神经网络视觉检测openvino
ANomalib第一章ANomalib第一章:本地部署ANomalib安装anomalib通过pip安装通过源码安装常见问题收录ANomalib第一章:本地部署ANomalib该框架是基于英特尔的openvino推理平台开发的专用于工业缺陷检测场景下的模型选择、训练和性能测试平台。目前国内使用该模型用于流水线上电路板等缺陷检测,已经有工业使用该框架并开展对应的工业缺陷检测业务。Anomalib是一
- ubuntu20.04 openvino的yolov8推理(nncf量化)
yuyuyue249
openvinoYOLOpython
1.环境配置:pipinstallopenvino-dev(2023.0.1)pipinstallnncf(2.5.0)pipinstallultralytics2.模型转换及nncf量化:1.pytorch->onnx:#Pytorch模型转换为Onnx模型pythonfromultralyticsimportYOLOmodel=YOLO('yolov8s.pt')#yolov8原生转换resu
- ubuntu配置openvino yolov5
yuyuyue249
ubuntuopenvinoYOLO
第一步:neo(intel牌加速显卡驱动)下载--UBUNTU20.04本人踩坑点,不下neo只能cpu运行。1.sudoaptinstallocl-icd-libopencl12.mkdirneo&&cdneo3.(改成国内源会快一点)wgethttps://mirror.ghproxy.com/https://github.com/intel/intel-graphics-compiler/r
- 当 Ollama 遇上 OpenVINO™ :解锁多硬件 AI 推理新范式
OpenVINO 中文社区
人工智能openvino
点击蓝字关注我们,让开发变得更有趣作者|赵红博AI软件解决方案工程师OpenVINO™为什么选择Ollama+OpenVINO™组合?双引擎驱动的技术优势Ollama和OpenVINO™的结合为大型语言模型(LLM)的管理和推理提供了强大的双引擎驱动。Ollama提供了极简的模型管理工具链,而OpenVINO™则通过Intel硬件(CPU/GPU/NPU)为模型推理提供了高效的加速能力。这种组合不
- C#使用Openvino.Csharp推理Yolov9c.xml
蔡余申
c#openvinoxml
usingOpenCvSharp;usingOpenVinoSharp;usingOpenCvSharp.Dnn;usingSystem.Runtime.InteropServices;floatsigmoid(floata){floatb=1.0f/(1.0f+(float)Math.Exp(-a));returnb;}string[]read_class_names(stringpath){s
- agent实现:通过prompt方式实现agent自定义使用
loong_XL
深度学习大模型AIpromptagent打磨下大模型
参看:https://github.com/TommyZihao/openvino_tonypihttps://github.com/QwenLM/Qwen/blob/main/examples/react_prompt.md(思想类似react)通过prompt形式,基本任何llm模型都可以使用来自定义agent,不用只能那些支持functioncall的大模型的,更灵活自由prompt案例:比
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 英特尔开发板试用:结合OAK深度相机进行评测
OAK中国_官方
数码相机
最近英特尔官方发布了一篇文章:主要介绍了如何将英特尔开发板(小挪吒)与OAK深度相机结合使用,并通过OpenVINO™工具套件进行开发和性能评测OAK相机:作为深度数据采集的核心设备,其深度测距功能与OpenVINO™推理相结合,实现了高效的目标检测和深度信息处理。OpenVINO™:作为英特尔的深度学习推理框架,为开发板和OAK相机提供了强大的推理支持。性能优化:通过模型转换和硬件加速,去实现高
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- yolov5 实例分割:从原理、构建数据集到训练部署
外卖猿
AI实战yolov5实例分割c++部署opencv自定义数据集
yolov5实例分割:从原理、构建数据集到训练部署1.模型介绍1.1YOLOv5结构1.2YOLOv5推理时间2.构建数据集2.1使用labelme标注数据集2.2生成coco格式label2.3coco格式转yolo格式3.训练3.1整理数据集3.2修改配置文件3.3执行代码进行训练4.使用OpenCV进行c++部署5.使用openvino进行c++部署参考文献1.模型介绍1.1YOLOv5结构
- openvino yolov11识别
yuyuyue249
openvinoYOLOpython
importcv2importpathlibfromultralyticsimportYOLOimportmatplotlib.pyplotaspltimportopenvinoasovcore=ov.Core()det_model_path=pathlib.Path("/home/yuyue/yolov11/weights/yolo11n/yolo11n.xml")det_ov_model=co
- openvino:ImportError: DLL load failed while importing _pyopenvino: 找不到指定的模块。
码农市民小刘
openvino
万能的网友们,真诚发问,Openvino这玩意,安装之后咋就那么爱缺dll呢。我已经鼓捣一天了,筋疲力尽。两台电脑,一台安装之后就可以了,另外一台,安那个版本都不行.......,那位大神有知道原因和解决方案的不,求答案。
- LLM模型部署经验分享
lewis_kai
阿里云语言模型
LLM模型部署经验分享作者:大连理工大学李凯首先,你需要选择一个合适的部署平台,这可以是本地服务器、云服务提供商(如AWS、Azure、GoogleCloud等)、边缘设备或者特定的部署服务(如HuggingFaceHub)。在这里我使用的是魔搭平台的云服务器。然后下载你要部署的模型,这里下载的是通义千问。下载并部署玩模型后,我们还可以对模型转换和优化,该文会介绍基于OpenVINO的模型量化实践
- 【vLLM 学习】使用 OpenVINO 安装
HyperAI超神经
vLLMopenvino人工智能pythonvLLMLLMGPU编程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- 开发者实战 | OpenVINO™ 协同 Semantic Kernel:优化大模型应用性能新路径
OpenVINO 中文社区
openvino人工智能
点击蓝字关注我们,让开发变得更有趣作者:杨亦诚作为主要面向RAG任务方向的框架,SemanticKernel可以简化大模型应用开发过程,而在RAG任务中最常用的深度学习模型就是Embedding和Textcompletion,分别实现文本的语义向量化和文本生成,因此本文主要会分享如何在SemanticKernel中调用OpenVINO™runtime部署Embedding和Textcompleti
- 【vLLM 学习】使用 OpenVINO 安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。