- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 图像处理之蒸馏
醉后才知酒浓
面试题OpenCV图像处理人工智能计算机视觉深度学习
蒸馏什么是蒸馏蒸馏技术分类什么是轨迹一致性蒸馏(TCD)什么是蒸馏在图像处理领域,蒸馏是一种模型压缩和知识迁移的技术。它的基本思想是利用一个大型且复杂的模型(教师模型)来指导一个小型且简单的模型(学生模型)的训练。教师模型通常具有较高的性能和准确性,但由于其复杂性和计算成本,可能不适合在资源受限的环境中使用。因此,蒸馏的目标是将教师模型的知识转移到学生模型中,以便在保持或接近教师模型性能的同时,降
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 大模型训练和推理
李明朔
AIGC深度学习人工智能
文章目录一、NLP基础1.Tokenizer2.positionencoding3.注意力机制与transformer架构二、大模型训练1.SFT训练2.RLHF训练3.分布式并行训练技术(1)模型并行(2)数据并行4.MoE技术4.PEFT训练5.上下文扩展技术三、大模型推理1.模型压缩(1)剪枝(2)量化2.显存优化技术3.调度优化技术4.请求优化技术5.采样和解码加速6.模型并行策略7.其他
- 基于深度学习的高效模型压缩
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的高效模型压缩技术在确保模型性能的同时,显著减少了模型的存储需求和计算复杂度,从而使得深度学习模型能够更好地适应资源受限的环境(如移动设备、嵌入式系统)并加快推理速度。以下是关于高效模型压缩的详细讨论:1.模型压缩的背景与挑战随着深度学习模型的不断发展,模型规模和复杂性大幅增加,特别是在计算机视觉、自然语言处理等领域,模型通常包含数以亿计的参数。这种大规模模型虽然能够实现高精度,但其计
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 模型压缩开源项目:阿里-tinyNAS/微软NNI/华为-vega
清风2022
tinyNAS神经网络AutoMLvega
文章目录阿里-TinyNAS使用流程步骤一:搜索模型结构步骤二:导出模型结果步骤三:使用搜索的模型结构图像分类任务目标检测任务华为-vega简介定位优点缺点微软NNI简介定位优点缺点阿里-TinyNAShttps://github.com/alibaba/lightweight-neural-architecture-search聚焦NAS,进行合理的模块划分;更偏向算法使用平台,搜索得到精度较好
- 自然语言处理 | (13)kenLM统计语言模型构建与应用
CoreJT
自然语言处理自然语言处理(NLP)kenLM工具库统计语言模型n-gram智能纠错
本篇博客中我们将学习如何使用KenLM工具构建统计语言模型,并使用它完成一个典型的'智能纠错'文本任务。目录1.实验准备2.训练数据3.训练语言模型4.模型压缩5.模型加载6.智能纠错1.实验准备安装依赖#安装依赖!aptinstalllibboost-all-dev!aptinstalllibbz2-dev!aptinstalllibeigen3-dev下载KenLM并编译#下载kenlm压缩包
- 今日arXiv最热NLP大模型论文:微软提出SliceGPT,删除25%模型参数,性能几乎无损
夕小瑶
自然语言处理人工智能
引言:探索大型语言模型的高效压缩方法随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,它们对计算和内存资源的巨大需求成为了一个不容忽视的问题。为了缓解这些资源限制,研究者们提出了多种模型压缩方法,其中剪枝(pruning)技术因其在后训练阶段应用的潜力而备受关注。然而,现有的剪枝技术面临着需要额外数据结构支持和在当前硬件上受限的加速效果等挑战。在这篇博客中,我们将探讨一种新的剪枝方案——S
- 不容错过|大模型等各行业最新赛事汇总,速递给你!
会议之眼
人工智能阿里云微信
比赛动态1、AICAS2024大挑战:通用算力大模型推理性能软硬协同优化挑战赛比赛简介:选手基于通义千问-7B大语言模型,可从多角度提出相关方法(如模型压缩,参数稀疏,精度量化和结构剪枝等),并结合Arm架构硬件特性和开源软件资源(比如硬件BF16,矢量矩阵乘,ArmComputeLibrary等)来系统优化提升大模型在硬件上的推理性能。最终通过赛题组委会指定的测试方案获取选手的优化方法的评分。初
- Yolov8_obb旋转框检测,模型剪枝压缩
早茶和猫
旋转框模型剪枝YOLO剪枝目标检测算法人工智能
Yolov8_obb模型压缩之模型剪枝一、剪枝原理和pipleline参考:yolov5模型压缩之模型剪枝模型压缩(二)yolov5剪枝本次使用稀疏训练对channel维度进行剪枝,来自论文LearningEfficientConvolutionalNetworksThroughNetworkSlimming。其实原理很容易理解,我们知道bn层中存在两个可训练参数γ,β,输入经过bn获得归一化后的
- Threejs in autonomous driving -(2)模型精简
土肥圆_c1ab
在开发准备阶段建模同学都会提供一个车模,从前段考量一般来说超过100kb都算是大文件了,这个模型一般是obj+mtl文件,这两个一般都会超过MB。推动精简的话都非常都难。精简方案删减模型的顶点和面片模型压缩第一种专业性比较强,我们是搞不定的,那么就可以从第二种思路为出发点。通过万能的搜索引擎搜索我们可以找到被誉为3d业界的json格式的gltf。gltf简介。这里推荐两个工具obj2gltfhtt
- 训练和部署之间的区别-模型压缩
An_ich
深度学习python开发语言人工智能网络算法深度学习机器学习
神经网络训练神经网络训练的本质就是找到一个f(x),只不过是一个参数量很大的f(x)那么神经网络训练和部署之间的区别就是减少参数量为什么要减少参数量1.大模型不方便进行部署,网络的推断速度比较慢2.对于移动端等设备也没有这么强的算力3.对于网络训练的结果,也就是网络训练中学习到的知识和网络参数量两者的关系不是线性的,知识和参数量之间的关系更趋向于一个log函数怎样减少参数量1.减小参数的精度例如将
- AI模型压缩技术
SugarPPig
人工智能人工智能
模型压缩技术是指通过一系列方法和技巧,减小深度学习模型的大小和计算量,同时尽量保持模型的性能。这对于在资源受限的设备上部署模型、减少模型传输和存储成本以及提高模型推理速度都非常有用。以下是一些常见的模型压缩技术:参数剪枝(Pruning):通过删除模型中不重要的参数来减小模型的大小。剪枝方法可以基于参数的重要性进行选择,例如,通过设置阈值来删除小于该阈值的参数。量化(Quantization):将
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- 第五节课 LMDeploy 大模型量化部署实践(笔记)
幽径微澜
书生·浦语大模型实战营(笔记笔记python
来源:(5)LMDeploy大模型量化部署实践_哔哩哔哩_bilibili课程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md1.大模型部署背景(1)模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的要求,常常对需要对模型进行优化,例如模型压缩和硬件
- 【书生·浦语大模型实战营05】《(5)LMDeploy 大模型量化部署实践》学习笔记
songyuc
学习笔记
《(5)LMDeploy大模型量化部署实践》课程文档:《LMDeploy的量化和部署》1、大模型部署背景1.1模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的需求,常常需要对模型进行优化,例如模型压缩和硬件加速产品形态云端、边缘计算端、移动端1.2大模型特点内存开销巨大庞大的参数量。7B模型仅权重就需要14+G显存采用自回归生成token
- Model Compression and Acceleration Overview
Ada's
认知智能认知计算片上互联边缘计算系统科学神经科学认知科学专题《智能芯片》
模型压缩、模型加速模型压缩方法:能够有效降低参数冗余减少存储占用、通信带宽、计算复杂度利部署线性或非线性量化:1/2bits,int8和fp16等;结构或非结构剪枝:deepcompression,channelpruning和networkslimming等;网络结构搜索(NAS:NetworkArchitectureSearch):DARTS,DetNAS、NAS-FCOS、Proxyless
- 初识人工智能,一文读懂过拟合&欠拟合和模型压缩的知识文集(3)
普修罗双战士
人工智能专栏人工智能机器学习自然语言处理语言模型人机交互计算机视觉
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一人工智能专栏人工智能专业知识学习二人工智能专栏人工智能专业知识学习三人工智能专栏人工智能专业知识学习四人工智能专栏人工智能专业知识学习五人工智能专栏人工智能专业知识学习六人工智能专栏人工智能专业知
- 对 MODNet 其他模块的剪枝探索
Maitre Chen
剪枝算法深度学习人工智能计算机视觉
写在前面先前笔者分享了《对MODNet主干网络MobileNetV2的剪枝探索》,没想到被选为了CSDN每天值得看系列,因为笔者开设的专栏《MODNet-Compression探索之旅》仅仅只是记录笔者在模型压缩领域的探索历程,对此笔者深感荣幸,非常感谢官方大大的认可!!!接下来,笔者会加倍努力,创作更多优质文章,为社区贡献更多有价值、有意思的内容!!!!本文将分享笔者对MODNet网络结构内部其
- Knowledge Distillation (1) 模块替换之bert-of-theseus-上篇
小蛋子
更好的阅读体验请跳转至KnowledgeDistillation(1)模块替换之bert-of-theseus-上篇如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,那这艘船还是原来的那艘船吗?-普鲁塔克最近遇到一个需要对算法加速的场景,了解到了一个比较简洁实用的方法:Bert-of-theseus,了解了原理后参考代码实验后,验证了其有效性,所以总结一下。模型压缩模型在设计之初都
- 改进yolov7网络(从轻量化方面的8个方法)
qhchao
YOLO网络计算机视觉
当谈到目标检测领域时,YOLOv7(YouOnlyLookOncev7)是一种非常流行的深度学习网络模型。虽然YOLOv7已经在精度和速度方面取得了显著的改进,但我们仍然可以从轻量化角度来进一步优化该模型。以下是8条关于如何从轻量化角度改进YOLOv7网络的建议:1.模型压缩:使用轻量化的模型压缩技术,如剪枝(pruning)和量化(quantization),来减小YOLOv7的模型大小。通过剪
- 本地模型能力适配
道亦无名
人工智能人工智能
本地模型能力适配是指将多模态大模型应用于本地设备或特定场景时,需要进行的一种技术处理。由于多模态大模型通常需要较大的计算资源和存储空间,直接将其部署到本地设备上可能会面临性能和效率的瓶颈。因此,需要进行本地模型能力适配,以适应本地设备的计算能力和存储限制。具体来说,本地模型能力适配可以通过以下几种方式实现:模型压缩:通过减少模型的大小和计算复杂度,使其更加适合本地设备的计算和存储能力。例如,可以使
- 将大模型与小模型结合的8种常用策略分享,附17篇案例论文和代码
深度之眼
人工智能干货深度学习干货机器学习人工智能深度学习大模型小模型
现在我们对大模型的研究逐渐转向了“降耗增效”,通过结合高性能低耗资的小模型,实现更高效的计算和内存利用,达到满足特定场景的需求、降低成本和提高效率、提升系统性能以及增强适应性和扩展性的目的。那么如何将大模型与小模型结合?目前较常用的策略有模型压缩(蒸馏、剪枝)、提示语压缩、联合推理、迁移学习、权值共享、集成学习等。咱们今天就来简单聊聊这8种策略。部分策略的具体步骤以及每种策略相关的参考论文我也放上
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- 大模型听课笔记——书生·浦语(5)
亲爱的阿基米德^
笔记
LMDeploy的量化和部署1大模型部署简介模型部署:将训练好的模型在特定软硬件环境中启动的过程,使模型能够接受输入并返回结果。为了满足性能和效率的需求。常常需要对模型进行优化,例如模型压缩和硬件加速产品形态:云端、变韵计算端、移动端计算设备:CPU、GPU、NPU、TPU等大模型的特点:内存开销巨大庞大的参数量采用自回归生成token,需要缓存Attentiondek/v,带来巨大的内存开销动态
- 【书生·浦语】大模型实战营——第五课笔记
Horace_01
笔记人工智能python语言模型
教程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md视频链接:https://www.bilibili.com/video/BV1iW4y1A77P大模型部署背景关于模型部署通常需要模型压缩和硬件加速大模型的特点1、显存、内存花销巨大2、动态shape,输入输出数量不定3、相对视觉模型,LLM结构简单,大部
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl