【tensorflow学习】使用tensorboard实现数据可视化

1. 创建summary op

第一步是标记想要记录的节点.
常用的summary操作有tf.summary.scalar和tf.summary.histogram.
比如你想要记录交叉熵:

 tf.summary.scalar('cross_entropy', cross_entropy)

2. merge合并操作

调用tf.summary.merge_all(), 将所有收集的summaries合成一个tensor。

 merged = tf.summary.merge_all()

3. 创建writer对象

调用tf.summary.FileWriter将汇总数据写入磁盘,

FileWriter 的构造函数中包含了参数 logdir。这个 logdir 非常重要,所有事件都会写到它所指的目录下。此外,FileWriter中还包含了一个可选择的参数 Graph。如果输入了该参数,那么 TensorBoard 就会显示你的graph,让你能更好的理解graph中数据的流通。

    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

4. 运行

和正常运行训练过程是一样的.对于placeholder的图要带上feed参数.

summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)

5. 打开tensorboard

在命令行中输入tensorboard --logdir=E:/tmp/mnist/logs/mnist_with_summaries :

【tensorflow学习】使用tensorboard实现数据可视化_第1张图片

在浏览器中打开localhost:6006:

【tensorflow学习】使用tensorboard实现数据可视化_第2张图片

6. 源码

来自 TensorBoard: Visualizing Learning
注意:如果不修改logdir 的话,log数据会保存在当前文件根目录的tmp文件夹中。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

FLAGS = None


def train():
    # Import data
    mnist = input_data.read_data_sets(FLAGS.data_dir,
                                      one_hot=True,
                                      fake_data=FLAGS.fake_data)

    sess = tf.InteractiveSession()
    # Create a multilayer model.

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)

    # We can't initialize these variables to 0 - the network will get stuck.
    def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)

    def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)

    def variable_summaries(var):
        """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean', mean)
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev', stddev)
            tf.summary.scalar('max', tf.reduce_max(var))
            tf.summary.scalar('min', tf.reduce_min(var))
            tf.summary.histogram('histogram', var)

    def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        """Reusable code for making a simple neural net layer.

        It does a matrix multiply, bias add, and then uses relu to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        # Adding a name scope ensures logical grouping of the layers in the
        # graph.
        with tf.name_scope(layer_name):
            # This Variable will hold the state of the weights for the layer
            with tf.name_scope('weights'):
                weights = weight_variable([input_dim, output_dim])
                variable_summaries(weights)
            with tf.name_scope('biases'):
                biases = bias_variable([output_dim])
                variable_summaries(biases)
            with tf.name_scope('Wx_plus_b'):
                preactivate = tf.matmul(input_tensor, weights) + biases
                tf.summary.histogram('pre_activations', preactivate)
            activations = act(preactivate, name='activation')
            tf.summary.histogram('activations', activations)
            return activations

    hidden1 = nn_layer(x, 784, 500, 'layer1')

    with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        tf.summary.scalar('dropout_keep_probability', keep_prob)
        dropped = tf.nn.dropout(hidden1, keep_prob)

    # Do not apply softmax activation yet, see below.
    y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

    with tf.name_scope('cross_entropy'):
        # The raw formulation of cross-entropy,
        #
        # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
        #                               reduction_indices=[1]))
        #
        # can be numerically unstable.
        #
        # So here we use tf.nn.softmax_cross_entropy_with_logits on the
        # raw outputs of the nn_layer above, and then average across
        # the batch.
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)

    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
            cross_entropy)

    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out to
    # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
    tf.global_variables_initializer().run()

    # Train the model, and also write summaries.
    # Every 10th step, measure test-set accuracy, and write test summaries
    # All other steps, run train_step on training data, & add training
    # summaries

    def feed_dict(train):
        """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
        if train or FLAGS.fake_data:
            xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
            k = FLAGS.dropout
        else:
            xs, ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: xs, y_: ys, keep_prob: k}

    for i in range(FLAGS.max_steps):
        if i % 10 == 0:  # Record summaries and test-set accuracy
            summary, acc = sess.run(
                [merged, accuracy], feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summaries, and train
            if i % 100 == 99:  # Record execution stats
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True),
                                      options=run_options,
                                      run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                train_writer.add_summary(summary, i)
                print('Adding run metadata for', i)
            else:  # Record a summary
                summary, _ = sess.run(
                    [merged, train_step], feed_dict=feed_dict(True))
                train_writer.add_summary(summary, i)
    train_writer.close()
    test_writer.close()


def main(_):
    if tf.gfile.Exists(FLAGS.log_dir):
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)
    train()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                        default=False,
                        help='If true, uses fake data for unit testing.')
    parser.add_argument('--max_steps', type=int, default=1000,
                        help='Number of steps to run trainer.')
    parser.add_argument('--learning_rate', type=float, default=0.001,
                        help='Initial learning rate')
    parser.add_argument('--dropout', type=float, default=0.9,
                        help='Keep probability for training dropout.')
    parser.add_argument('--data_dir', type=str, default='E:/tmp/mnist/input_data',
                        help='Directory for storing input data')
    parser.add_argument('--log_dir', type=str, default='E:/tmp/mnist/logs/mnist_with_summaries',
                        help='Summaries log directory')
    FLAGS, unparsed = parser.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

7. 参考

  1. http://blog.csdn.net/selous/article/details/71637384
  2. https://www.tensorflow.org/get_started/summaries_and_tensorboard

你可能感兴趣的:(tensorflow学习,tensorflow学习)