- 【初学者】请介绍一下线性与非线性的区别?
lisw05
计算科学线性代数图论数学建模
李升伟整理线性与非线性是数学和科学中常用的概念,主要区别如下:1.定义线性:系统或函数满足叠加性和齐次性。叠加性指输入的和导致输出的和,齐次性指输入按比例缩放时,输出也按相同比例缩放。非线性:不满足叠加性或齐次性的系统或函数。2.数学表达线性:形式为y=ax+b,其中a和b为常数。非线性:形式多样,如y=x2、y=sin(x)、y=ex等。3.图形表现线性:图形为直线。非线性:图形为曲线,如抛物线
- 什么是hessian矩阵
红廉骑士兽
矩阵线性代数算法机器学习numpy
Hessian矩阵是一个数学概念,是用来表示函数关于其自变量的二阶偏导数的矩阵。它是一个实对称矩阵,对于多元函数来说,每一个元素是对应自变量关于该函数的二阶偏导数。Hessian矩阵在优化算法和最优化等领域有着重要的应用。
- Hessian 矩阵(海森矩阵)
Chen_Chance
矩阵算法机器学习
Hessian矩阵(海森矩阵)是一个包含二阶偏导数信息的方阵,在数学和优化中起着重要作用。对于一个多元函数,其Hessian矩阵是由其各个变量的二阶偏导数组成的矩阵。假设有一个函数f(x1,x2,…,xn)f(x_1,x_2,\dots,x_n)f(x1,x2,…,xn),其Hessian矩阵(H)的元素是:Hij=∂2f∂xi∂xjH_{ij}=\frac{\partial^2f}{\parti
- deepseek具体应用场景
ahyouxiang
人工智能
DeepSeek的具体应用场景非常广泛,涵盖了多个领域和行业。以下是基于证据的详细总结:金融领域DeepSeek在金融领域的应用表现突出,例如通过其大语言模型(如DeepSeekLLM67Bt)提供数学、逻辑推理等能力,帮助金融机构提升服务效率。此外,DeepSeek还被应用于智能安全体产品中,通过安全大模型实现个性化开发和优化。医疗领域在医疗领域,DeepSeek的技术被用于辅助诊断和患者记录管
- 【高考志愿】数学
大雨淅淅
程序人生高考
目录一、数学专业概述1.1学科特点1.2课程设置1.3学习方法1.4数学专业的分类二、就业前景三、填报建议四、注意事项五、数学专业排名一、数学专业概述1.1学科特点数学专业作为一门基础学科,具有高度的抽象性、逻辑性和精确性。它要求学生具备良好的数学基础、逻辑思维能力和解决问题的能力。因此,选择数学专业的学生需要有较强的数学兴趣和扎实的数学基础。1.2课程设置数学专业的课程设置通常包括数学分析、高等
- 五、AIGC大模型_08Agent基础知识
学不会lostfound
AI人工智能agent不同生命周期的知识用AI处理AIGC
0、概述根据知识的生命周期分类,我们通常会采取不同的方法(微调、RAG、Agent)来将知识融入到AI中0.1长生命周期知识这类知识通常具有较高的稳定性和通用性,不会因时间的推移而轻易改变。它们是知识体系中的“基石”,在较长时间内保持有效性和价值。特点:稳定性强:如数学定理、物理公式等,这些知识经过长期验证,具有高度的确定性和普适性基础性强:往往是学习和研究其他知识的基础,例如教科书中的基础知识更
- 谈高考真题的使用(数学)
weixin_34116110
python测试
2019独角兽企业重金招聘Python工程师标准>>>在高三数学复习中,大家常说“以本为本,以纲为纲,高考真题当主粮”,就是以教材内容为根本,以“考试大纲”为准绳,以高考真题的训练为主线;抓住了本,把握了纲,训练有的放矢,我们的复习就会事半功倍。高考数学试题难度相对稳定,考查形式的变化却是异彩纷呈,而变化中又有着一定的规律:全国试题与各省市试题的考试要求基本一致;题型除上海和江苏外,全国和其他各省
- 《炫动漫》杂志社炫动漫杂志社炫动漫编辑部2024年第1期目录
QQ296078736
python
理论新知探究中职班主任德育能力提升策略(1)叶荣琳基于核心素养下以问题为驱动的高中数学教学评一体化的课堂教学探究(4)鹿园园农村初中英语作业设计与批阅方式的创新使用(7)侯成英新课改背景下初中物理教学方法创新策略探究(10)李传荣“双减”背景下构建初中数学高效课堂的策略(13)陈苏婷精神医学本科生参加心理剧团体课程的教学效果研究(16)查莉珺;王语含;陈虹;屈远;胡华提质增效:《机械识图》高职复习
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- 错排(数学层面)
想做后端的小C
数学算法人工智能算法
错排,即对于n个物品,每个物品有一个对应的位置,但是在排列时将他们全部错开放置,并计算有n个物体时,错排共有几种排列可能假设位置标号为a~z对于选定的A物体,将它放到b位置排列的第一种可能,B物体放到a位置剩下的物体排列时的总可能次数为f(n−2)f(n-2)f(n−2)排列的第二种可能,B物体放到除a、b以外的位置此时,可以把B物体当成原本应该放到a位置,但是此时要把除b位置以外的n-1个位置错
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 2023计算机组成原理考研知识点:哈佛结构
计算机考研
考研资料计算机网络哈佛结构数据结构
2023年计算机考研初试科目一般分四门,基本都考政治、英语一、数学一和计算机基础(计算机综合),报考院校不同专业课考试内容一般不同,建议考生下正式备考2023年研考时先确认报考院校计算机研招科目内容,避免无效备考。计算机组成原理:哈佛结构将指令和数据放在两个独立的存储器,允许在一个机器周期内同时获得指令和操作数,提高了执行速度。2023年计算机组成原理复习题示例(来源于网络,如有侵权,请联系删除)
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- 字符串哈希从入门到精通
LIUJH1233
C++哈希算法算法c++数据结构
一、基本概念字符串哈希是将任意长度的字符串映射为固定长度的哈希值(通常为整数)的技术,核心目标是实现O(1)时间的子串快速比较和高效查询。其本质是通过数学运算将字符串转换为唯一性较高的数值,例如:其中P为基数(根据题目),M为大质数,s[i]为字符的ASCII值。二.一般哈希实现一般哈希的实现有两种方式:通俗的讲叫:1.蹲茅坑法2.拉拉链法2.1蹲茅坑法假设你现在要处理19与12(mod7)你会发
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 人工智能之数学基础:基变换和坐标变换的区别
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能机器学习算法基变换坐标变换线性变换
本文重点基变换和坐标变换是线性代数中的两个重要概念,它们描述了向量在不同基底或坐标系下的表示和转换关系。矩阵矩阵不仅可以作为线性变换的描述,而且可以作为一组基地描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去,这就是基变换和坐标变换。定义与本质基变换:定义:基变换是指向量在不同基底下表示的关系的数学描述。它涉
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- C#运算符与表达式详解
AitTech
C#c#算法开发语言
在C#编程中,运算符和表达式是构建复杂逻辑和处理数据的关键元素。以下是对C#运算符与表达式的详细解析:一、运算符运算符是一种特殊的符号,用于执行各种数学、逻辑和其他操作。C#中的运算符可以分为以下几类:算术运算符:+:加法运算符,用于将两个数值相加。-:减法运算符,用于将一个数值减去另一个数值。*:乘法运算符,用于将两个数值相乘。/:除法运算符,用于将一个数值除以另一个数值。%:取模运算符,用于获
- 【MySQL】表的改,删
熙曦Sakura
MySQLmysql数据库
CRUD:Create(创建),Retrieve(读取),Update(更新),Delete(删除)6.3Update语法:UPDATEtable_nameSETcolumn=expr[,column=expr...][WHERE...][ORDERBY...][LIMIT...]对查询到的结果进行列值更新6.3.1将孙悟空同学的数学成绩变更为80分--更新值为具体值--查看原数据SELECTna
- 【第15届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.握手问题(填空题)B.小球反弹(填空题)C.好数D.R格式E.宝石组合F.数字接龙G.爬山H.拔河正文总共8道题。A.握手问题(填空题)【题目】握手问题【分析】纯考察数学中简单排列组合。考虑相互握手的43人:(43*42)/2;考虑剩下7人与43人分别握手:7*43;两者相加即最终答案。【答案】1204【AC_Code】#include#d
- java实现XZordering算法(附带源码)
Katie。
Java实战项目java算法开发语言
Java实现XZOrdering算法详解目录项目背景与简介1.1项目概述1.2开发动机与应用场景1.3XZOrdering算法简介相关理论知识与数学基础2.1空间映射与局部性保持2.2Morton编码(Z-order)的原理2.3位交叉(BitInterleaving)技术2.4算法复杂度与性能考量系统架构与模块设计3.1整体架构设计3.2主要模块划分3.3类图与流程图项目实现思路与详细设计4.1
- 基于MATLAB的齿轮箱振动信号分析
代码编织匠人
matlab开发语言数学建模
基于MATLAB的齿轮箱振动信号分析齿轮传动是工业生产中常见的机械传动方式,但是在长期运转过程中会产生振动现象,这种振动会影响齿轮传动的精度、寿命以及稳定性。因此,对齿轮箱振动信号的分析就显得非常重要。MATLAB是一款功能强大的数学软件,可以用于对齿轮箱振动信号进行分析和处理。本文就将介绍如何利用MATLAB对齿轮箱振动信号进行分析。一、齿轮箱振动信号获取首先,我们需要获取齿轮箱振动信号。通常可
- Python 常用函数全解析,轻松提升编码效率
yang789022
python开发语言windows
Python常用函数全解析,轻松提升编码效率Python常用函数全解析,轻松提升编码效率1.基础内置函数1.1`print()`与`input()`1.2`len()`、`type()`与`isinstance()`2.数学与数值处理函数2.1`abs()`、`round()`与`pow()`2.2`divmod()`与`max()/min()`3.序列与迭代相关函数3.1`range()`与`e
- MySQL常用函数详解及SQL代码示例
星河浪人
mysqlsqlandroid
MySQL常用函数详解及SQL代码示例引言当前日期和时间函数字符串函数数学函数聚合函数结论引言MySQL作为一种广泛使用的关系型数据库管理系统,提供了丰富的内置函数来简化数据查询、处理和转换。掌握这些函数可以大大提高数据库操作的效率和准确性。本文将详细介绍MySQL中一些常用的函数,并配以SQL代码示例,帮助读者更好地理解和应用这些函数。当前日期和时间函数在当前时间(中国北京时间2025年03月1
- 蓝桥杯Python赛道备赛——Day6:算术(二)(数学问题)
SKY YEAM
蓝桥杯备赛蓝桥杯python职场和发展
本期博客是蓝桥杯备赛中算术(数学问题)的第二期,包括:快速幂算法、逆元(模意义下的倒数)、组合数计算和排列数计算。每一种数学问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法算术(二)(数学问题)一、快速幂算法二、逆元(模意义下的倒数)三、组合数计算四、排列数计算一、快速幂算法1.定义:快速计算大指数幂的算法。2.算法原理:二进
- 芒格的“清晰思考“方法在量子计算商业模式设计中的应用
AGI大模型与大数据研究院
DeepSeek量子计算网络运维ai
芒格的"清晰思考"方法在量子计算商业模式设计中的应用关键词:芒格、清晰思考方法、量子计算、商业模式设计、应用策略摘要:本文聚焦于将芒格的“清晰思考”方法应用于量子计算商业模式设计。首先介绍了背景信息,包括目的范围、预期读者等。接着阐述了核心概念,如“清晰思考”方法和量子计算商业模式的原理及联系,并给出相应示意图和流程图。详细讲解了核心算法原理及操作步骤,结合数学模型和公式进行说明。通过项目实战案例
- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>