Mapreduce 订单分组案例

程序执行流程如下:

map()-->getPartition()分区--->write()(序列化,每一行都顺序执行这三个方法)--->readFields()---->compareTo()排序---->readFields()--->分组compare--->reduce()

对于每一行的内容,依次执行map()-->getPartition()---->write()(序列化,会在指定的输出目录下生成temporary目录),全部序列化完成之后执行readFields(),之后进行排序,全部排序完毕后才会再次执行readFields(),

之后进行分组,分出一组,执行一次reduce()写出数据

1.OrderBean(分了区之后就不需要对OrderId进行排序了,因为同一分区OrderId相同)

 1 package mapreduce.order;
 2 
 3 import java.io.DataInput;
 4 import java.io.DataOutput;
 5 import java.io.IOException;
 6 import org.apache.hadoop.io.WritableComparable;
 7 
 8 public class OrderBean implements WritableComparable{
 9     private String orderId;
10     private Double price;
11     
12     public String getOrderId() {
13         return orderId;
14     }
15 
16     public void setOrderId(String orderId) {
17         this.orderId = orderId;
18     }
19 
20     public Double getPrice() {
21         return price;
22     }
23 
24     public void setPrice(Double price) {
25         this.price = price;
26     }
27 
28     public OrderBean() {
29         super();
30     }
31 
32     /**
33      * 序列化
34      * @param out
35      * @throws IOException
36      */
37     @Override
38     public void write(DataOutput out) throws IOException {
39         out.writeUTF(orderId);
40         out.writeDouble(price);
41     }
42 
43     /**
44      * 反序列化
45      * @param in
46      * @throws IOException
47      */
48     @Override
49     public void readFields(DataInput in) throws IOException {
50         orderId = in.readUTF();
51         price   = in.readDouble();
52     }
53 
54     
55     @Override
56     public String toString() {
57         return orderId + "\t" + price;
58     }
59 
60     /**
61      * 二次排序(如果进行了分区,可以直接对price排序,不再需要二次排序)
62      * @param o
63      * @return
64      */
65     @Override
66     public int compareTo(OrderBean o) {
67         //先比较orderId(字符串)
68     //    int result = this.getOrderId().compareTo(o.getOrderId());
69         
70         //相同再比较price
71     //    if(result == 0) {
72             //降序,数字的compareTo() -1表示小于
73         int    result = this.getPrice() > o.getPrice()?-1:1;
74     //    }
75         return result;
76     }
77 }

2.OrderMapper

 1 package mapreduce.order;
 2 
 3 import java.io.IOException;
 4 import org.apache.hadoop.io.LongWritable;
 5 import org.apache.hadoop.io.NullWritable;
 6 import org.apache.hadoop.io.Text;
 7 import org.apache.hadoop.mapreduce.Mapper;
 8 
 9 public class OrderMapper extends Mapper {
10     OrderBean order = new OrderBean();
11 
12     @Override
13     protected void map(LongWritable key, Text value,
14             Mapper.Context context)
15             throws IOException, InterruptedException {
16 
17         // 1.读取一行
18         String line = value.toString();
19 
20         // 2.切割并封装对象
21         String[] split = line.split("\t");
22         order.setOrderId(split[0]);
23         order.setPrice(Double.parseDouble(split[2]));
24 
25         // 3.输出
26         context.write(order, NullWritable.get());
27     }
28 }

3.OrderPartioner

 1 package mapreduce.order;
 2 
 3 import org.apache.hadoop.io.NullWritable;
 4 import org.apache.hadoop.mapreduce.Partitioner;
 5 
 6 /**
 7  * 分区
 8  * @author tele
 9  *
10  */
11 public class OrderPartioner extends Partitioner {
12     /**
13      * 默认是根据orderBean的hashcode进行分区
14      * 现在更改为orderBean对象的orderId进行分区,这样相同orderId的即可进入同一分区
15      */
16     @Override
17     public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {
18         return (key.getOrderId().hashCode() & Integer.MAX_VALUE) % numReduceTasks;
19     }
20 }

4.OrderGroupComparator

 1 package mapreduce.order;
 2 
 3 import org.apache.hadoop.io.WritableComparable;
 4 import org.apache.hadoop.io.WritableComparator;
 5 
 6 /**
 7  * reduce分组的方法
 8  * 
 9  * @author tele
10  *
11  */
12 public class OrderGroupComparator extends WritableComparator {
13     /**
14      * 确保类型转换成功,能够创建实例,如果是false,创建的实例为null
15      */
16     protected OrderGroupComparator() {
17         super(OrderBean.class, true);
18     }
19 
20     /**
21      * reduce默认是根据key进行分组,即此处的orderBean,重写之后
22      * 根据orderBean的orderId进行分组,相同的orderId的orderBean将会分到同一组
23      */
24     @Override
25     public int compare(WritableComparable a, WritableComparable b) {
26         OrderBean bean1 = (OrderBean) a;
27         OrderBean bean2 = (OrderBean) b;
28         return bean1.getOrderId().compareTo(bean2.getOrderId());
29     }
30 }

5.OrderReducer(reduce()每次读入一组)

 1 package mapreduce.order;
 2 
 3 import java.io.IOException;
 4 import org.apache.hadoop.io.NullWritable;
 5 import org.apache.hadoop.mapreduce.Reducer;
 6 
 7 public class OrderReducer extends Reducer {
 8     @Override
 9     protected void reduce(OrderBean key, Iterable value,
10             Reducer.Context context)
11             throws IOException, InterruptedException {
12         context.write(key, NullWritable.get());
13     }
14 }

6.OrderDriver(必须设置分组类)

 1 package mapreduce.order;
 2 
 3 import java.io.IOException;
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.Path;
 6 import org.apache.hadoop.io.NullWritable;
 7 import org.apache.hadoop.mapreduce.Job;
 8 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 9 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
10 
11 /**
12  * 
13  * @author tele
14  *
15  */
16 public class OrderDriver {
17     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
18         // 1.获得job实例
19         Configuration conf = new Configuration();
20         Job job = Job.getInstance(conf);
21 
22         // 2.设置driverclass
23         job.setJarByClass(OrderDriver.class);
24         // mapclass
25         job.setMapperClass(OrderMapper.class);
26         // reduceclass
27         job.setReducerClass(OrderReducer.class);
28 
29         // 3.map输入输出数据类型
30         job.setMapOutputKeyClass(OrderBean.class);
31         job.setMapOutputValueClass(NullWritable.class);
32 
33         // 4.最终输出数据类型
34         job.setOutputKeyClass(OrderBean.class);
35         job.setOutputValueClass(NullWritable.class);
36 
37         // 7.设置分区类
38         job.setPartitionerClass(OrderPartioner.class);
39         job.setNumReduceTasks(3);
40 
41         // 8.设置分组类
42         job.setGroupingComparatorClass(OrderGroupComparator.class);
43 
44         // 5.输入与输出路径
45         FileInputFormat.setInputPaths(job, new Path(args[0]));
46         FileOutputFormat.setOutputPath(job, new Path(args[1]));
47 
48         // 6.提交与退出
49         boolean result = job.waitForCompletion(true);
50         System.exit(result ? 0 : 1);
51 
52     }
53 }

 

转载于:https://www.cnblogs.com/tele-share/p/9648772.html

你可能感兴趣的:(Mapreduce 订单分组案例)