常用的进程/线程间通信机制有管道、信号量、消息队列、信号、共享内存、socket等等,其中主要作为进程/线程间通知/等待的有管道pipe和socket。从Linux 2.6.27版本开始增加了eventfd,主要用于进程或者线程间的通信(如通知/等待机制的实现)。
注:eventfd用于进程/线程间通信,效率比pipe高
(1) eventfd()函数介绍:创建一个文件描述符efd,用于事件通知,该文件描述符能被用户空间当作一个事件等待/响应机制
(2) efd可以像普通的文件描述符一样,用epoll_wait进行监听:当epoll_wait检测到efd可读时,说明当前线程被其他线程通知notify
(2) efd的全部缓冲区大小只有定长8byte
* #include <sys/eventfd.h>
* int eventfd(unsigned int initval, int flags);
* 参数说明:
* initval,初始化计数器的值。
* flags, EFD_NONBLOCK,设置socket为非阻塞。
* EFD_CLOEXEC,执行fork的时候,在父进程中的描述符会自动关闭,子进程中的描述符保留。
先来看看eventfd函数的用法,直接上示例:
[~/test]# ./efd 1 2 3
Parent about to read 父进程,阻塞在read,等待子进程向eventfd中写入数据
Child writing 1 to efd
Child writing 2 to efd
Child writing 3 to efd
Child completed write loop
Parent read 6 (0x6) from efd 父进程,被唤醒,read = 1 + 2 + 3 = 6
#include
#include
#include
#include
#include /* Definition of uint64_t */
#define handle_error(msg) \
do { \
perror(msg); \
exit(EXIT_FAILURE); \
} while (0)
int
main(int argc, char *argv[])
{
int efd, j;
uint64_t u;
ssize_t s;
if (argc < 2) {
fprintf(stderr, "Usage: %s ...\n" , argv[0]);
exit(EXIT_FAILURE);
}
efd = eventfd(0, 0); // EFD_CLOEXEC EFD_NONBLOCK EFD_SEMAPHORE
if (efd == -1)
handle_error("eventfd");
switch (fork()) {
case 0: // 子进程
sleep(2);
for (j = 1; j < argc; j++) {
printf("Child writing %s to efd\n", argv[j]);
u = strtoull(argv[j], NULL, 0);
s = write(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error("write");
}
printf("Child completed write loop\n");
exit(EXIT_SUCCESS);
default: // 父进程
while(1)
{
printf("Parent about to read\n");
s = read(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))
handle_error("read");
printf("Parent read %llu from efd\n", (unsigned long long) u);
exit(EXIT_SUCCESS);
}
case -1:
handle_error("fork");
}
}
#include
#include
#include
#include
#include
#include
#include
int efd = -1;
void *read_thread(void *dummy)
{
int ret = 0;
uint64_t count = 0;
int ep_fd = -1;
struct epoll_event events[10];
if (efd < 0)
{
printf("efd not inited.\n");
goto fail;
}
ep_fd = epoll_create(1024);
if (ep_fd < 0)
{
perror("epoll_create fail: ");
goto fail;
}
{
struct epoll_event read_event;
read_event.events = EPOLLHUP | EPOLLERR | EPOLLIN;
read_event.data.fd = efd;
//将efd添加到epoll中,监听读事件
ret = epoll_ctl(ep_fd, EPOLL_CTL_ADD, efd, &read_event);
if (ret < 0)
{
perror("epoll ctl failed:");
goto fail;
}
}
while (1)
{
//发生阻塞,直到efd可读事件到来
ret = epoll_wait(ep_fd, &events[0], 10, 5000);
if (ret > 0)
{
int i = 0;
for (; i < ret; i++)
{
if (events[i].events & EPOLLHUP)
{
printf("epoll eventfd has epoll hup.\n");
goto fail;
}
else if (events[i].events & EPOLLERR)
{
printf("epoll eventfd has epoll error.\n");
goto fail;
}
else if (events[i].events & EPOLLIN)
{
int event_fd = events[i].data.fd;
ret = read(event_fd, &count, sizeof(count));
if (ret < 0)
{
perror("read fail:");
goto fail;
}
else
{
struct timeval tv;
gettimeofday(&tv, NULL);
printf("success read from efd, read %d bytes(%llu) at %lds %ldus\n",
ret, count, tv.tv_sec, tv.tv_usec);
}
}
}
}
else if (ret == 0)
{
/* time out */
printf("epoll wait timed out.\n");
break;
}
else
{
perror("epoll wait error:");
goto fail;
}
}
fail:
if (ep_fd >= 0)
{
close(ep_fd);
ep_fd = -1;
}
return NULL;
}
int main(int argc, char *argv[])
{
pthread_t pid = 0;
uint64_t count = 0;
int ret = 0;
int i = 0;
efd = eventfd(0, 0); //创建fd用于事件通知
if (efd < 0)
{
perror("eventfd failed.");
goto fail;
}
ret = pthread_create(&pid, NULL, read_thread, NULL);
if (ret < 0)
{
perror("pthread create:");
goto fail;
}
for (i = 0; i < 5; i++)
{
count = 4;
ret = write(efd, &count, sizeof(count));
if (ret < 0)
{
perror("write event fd fail:");
goto fail;
}
else
{
struct timeval tv;
gettimeofday(&tv, NULL);
printf("success write to efd, write %d bytes(%llu) at %lds %ldus\n",
ret, count, tv.tv_sec, tv.tv_usec);
}
sleep(1);
}
fail:
if (0 != pid)
{
pthread_join(pid, NULL);
pid = 0;
}
if (efd >= 0)
{
close(efd);
efd = -1;
}
return ret;
}
输出结果如下所示:
success write to efd, write 8 bytes(4) at 1328805612s 21939us
success read from efd, read 8 bytes(4) at 1328805612s 21997us
success write to efd, write 8 bytes(4) at 1328805613s 22247us
success read from efd, read 8 bytes(4) at 1328805613s 22287us
success write to efd, write 8 bytes(4) at 1328805614s 22462us
success read from efd, read 8 bytes(4) at 1328805614s 22503us
success write to efd, write 8 bytes(4) at 1328805615s 22688us
success read from efd, read 8 bytes(4) at 1328805615s 22726us
success write to efd, write 8 bytes(4) at 1328805616s 22973us
success read from efd, read 8 bytes(4) at 1328805616s 23007us
epoll wait timed out
上述例子,首先使用eventfd创建描述符efd,并在线程里面使用epoll管理这个描述符efd,当在主线程中write时,线程中的epoll返回,描述符可读。
不难发现,通过eventfd创建的描述符efd,读/写大小为sizeof(uint_64)数据,就可以完成两个线程间的唤醒。比如上述例子,由于epoll_wait()的等待,pthread_create出来的线程阻塞,在主线程中,通过往eventfd中write数据,使描述符可读,epoll返回,这就达到了唤醒的目的。