CBOW模型详解(基于one-hot)

写太好了,忍不住分享一下。
CBOW模型


CBOW模型

CBOW模型详解(基于one-hot)_第1张图片

NOTE:花括号内{}为解释内容.

  1. 输入层:上下文单词的onehot. {假设单词向量空间dim为V,上下文单词个数为C}
  2. 所有onehot分别乘以共享的输入权重矩阵W. {V*N矩阵,N为自己设定的数,初始化权重矩阵W}
  3. 所得的向量 {因为是onehot所以为向量} 相加求平均作为隐层向量, size为1*N.
  4. 乘以输出权重矩阵W’ {N*V}
  5. 得到向量 {1*V} 激活函数处理得到V-dim概率分布 {PS: 因为是onehot嘛,其中的每一维斗代表着一个单词},概率最大的index所指示的单词为预测出的中间词(target word)
  6. 与true label的onehot做比较,误差越小越好
  7. 所以,需要定义loss function(一般为交叉熵代价函数),采用梯度下降算法更新W和W’。训练完毕后,输入层的每个单词与矩阵W相乘得到的向量的就是我们想要的词向量(word embedding),这个矩阵(所有单词的word embedding)也叫做look up table(其实聪明的你已经看出来了,其实这个look up table就是矩阵W自身),也就是说,任何一个单词的onehot乘以这个矩阵都将得到自己的词向量。有了look up table就可以免去训练过程直接查表得到单词的词向量了。

假设我们现在的Corpus是这一个简单的只有四个单词的document:
{I drink coffee everyday}
我们选coffee作为中心词,window size设为2
也就是说,我们要根据单词"I","drink"和"everyday"来预测一个单词,并且我们希望这个单词是coffee。

CBOW模型详解(基于one-hot)_第2张图片
CBOW模型详解(基于one-hot)_第3张图片
CBOW模型详解(基于one-hot)_第4张图片

假设我们此时得到的概率分布已经达到了设定的迭代次数,那么现在我们训练出来的look up table应该为矩阵W。即,任何一个单词的one-hot表示乘以这个矩阵都将得到自己的word embedding。

你可能感兴趣的:(NLP)