- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- nlp遇到的问题
1.AttributeError:'CodeGenTokenizer'objecthasnoattribute'encoder'pipinstalltransformers==4.33.22.ImportError:Using`low_cpu_mem_usage=True`ora`device_map`requiresAccelerate:`pipinstallaccelerate`pipinst
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- Promptify:简化NLP任务的高效工具箱
金斐茉
Promptify:简化NLP任务的高效工具箱PromptifyPromptEngineering|PromptVersioning|UseGPTorotherpromptbasedmodelstogetstructuredoutput.JoinourdiscordforPrompt-Engineering,LLMsandotherlatestresearch项目地址:https://gitcod
- Promptify与ReActAgent
frostmelody
人工智能
一、Promptify定位:NLP任务的「自动化流水线」1.解决什么问题?传统LLM应用开发痛点:反复调试:需手工编写/调整prompt格式(如调整分隔符、示例数量)兼容性差:不同模型需重写适配代码输出不稳定:非结构化文本需额外解析Promptify用标准化流水线解决上述问题,将复杂prompt工程简化为三行代码:model=OpenAI(api_key)#选择模型prompter=Prompte
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- Jenkins JNLP与SSH节点连接方式对比及连接断开问题解决方案
tianyuanwo
devopsjenkinsssh运维
一、JNLPvsSSH连接方式优缺点对比对比维度JNLP(JavaWebStart)SSH(SecureShell)核心原理代理节点主动连接Jenkins主节点,通过加密通道通信,支持动态资源分配。Jenkins通过SSH协议远程登录代理节点执行命令,需预先配置SSH服务。适用场景容器化环境(如Kubernetes)、需要跨平台或动态扩缩容的场景。传统物理机/虚拟机、静态节点或简单命令执行场景。安
- 用AI写一个自动记录手机支付记录的小插件
教程python
要实现一个自动记录手机支付记录的小插件,核心是利用AI技术解析支付通知短信/通知栏消息。以下是通过训练让AI写代码实现方案:基础方案:手动输入+AI分类(无需权限)#使用Python+Tkinter(界面)+简易NLP分类importtkinterastkfromdatetimeimportdatetimeimportreclassPaymentTracker:def__init__(self):
- AI 销售系统:重塑销售格局的科技利器
小柔说科技
人工智能科技java
在数字化浪潮汹涌澎湃的当下,人工智能(AI)正以前所未有的速度渗透到各个行业,销售领域也不例外。AI销售系统作为一种融合了先进人工智能技术的创新工具,正逐渐成为企业提升销售效率、优化客户体验、增强市场竞争力的关键因素。一、AI销售系统的概念与核心技术AI销售系统是基于人工智能技术构建的一套综合性销售管理平台,它整合了自然语言处理(NLP)、机器学习(ML)、数据分析、预测建模等多种核心技术。通过这
- 【炼丹炉】Conda环境离线迁移
黑白象
炼丹笔记自然语言处理pippythonanacondalinux
1.背景笔者所在公司最近要在局域网内部署NLP算法模型,由于需求方对数据安全有严格要求,新服务器所在局域网不能直接访问Internet,因此需要将模型所需的运行环境离线迁移到新服务器中。2.方案2.1conda-packconda-pack是一个命令行工具,用于打包conda环境。该命令会将坏境中安装的软件包的二进制文件进行打包。注:本方法不需要下载安装包,因此,conda-pack需要指定平台和
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 小白的进阶之路系列之十六----人工智能从初步到精通pytorch综合运用的讲解第九部分
金沙阳
人工智能pytorchpython
从零开始学习NLP在这个由三部分组成的系列中,你将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。你将学习如何从零开始构建循环神经网络NLP的基本数据处理技术如何训练RNN以识别单词的语言来源。从零开始学自然语言处理:使用字符级RNN对名字进行分类我们将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。展示了如何预处理数据以建模NLP。特别是,这些教程展示了如何以
- 使用Hugging Face的BGE模型进行文本嵌入
lirxx
人工智能langchain
在文本嵌入领域,BGE(BeijingAcademyofArtificialIntelligenceEmbeddings)模型是开源界的佼佼者。由北京智源人工智能研究院(BAAI)开发,BGE模型以其高效的嵌入性能和开放性获得了广泛的认可。本文将通过HuggingFace平台展示如何使用BGE模型进行文本嵌入。技术背景介绍文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有
- 第8章:智能菜谱生成器——语言模型如何解析烹饪秘方
白嫖不白嫖
深度求索-DeepSeek语言模型人工智能自然语言处理
第8章:智能菜谱生成器——语言模型如何解析烹饪秘方从语义理解到操作执行的完整技术解密工业案例背景:法国里昂的Bocused’Or国际烹饪大赛选手手册中记载这样一道经典指令:“将酱汁熬煮至Nappé状态(即勺子划过痕迹缓慢回填)”。当传统NLP系统将其简单译为"煮浓",新一代Transformer模型却精准解析出粘度为1500-2000cP的物性指标,并据此生成控温方案。这背后的核心技术便是基于烹饪
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- Java企业技术趋势分析:AI驱动下的Spring AI、LangChain4j与RAG系统架构
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【Java企业技术趋势分析:AI驱动下的SpringAI、LangChain4j与RAG系统架构】开篇在当今快速发展的技术环境中,人工智能(AI)正在以前所未有的速度重塑企业的技术架构和业务流程。Java作为企业级开发的主流语言之一,在AI应用落地方面也迎来了新的机遇和挑战。从自然语言处理(NLP)到机器学习(ML),再到生成式AI(GenerativeAI),Java开发者正在积极拥抱这些新兴技
- 【资源共享】eBook分享大集合
天堂的鸽子
杂七杂八资源分享
文章目录eBook分享大集合服务器系统类(9)机器学习类(17)NLP算法类(19)网络类(6)程序语言类C/C++语言(8)Python语言(14)Java语言(14)PHP语言(4)C#/.NET语言(21)Web技术(12)数据库类Oracle(5)MySQL(8)SQLServer(10)大数据类(11)其他系列IT思维类(15)架构设计类(11)敏捷开发类(21)面试精华文档Java(3
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- PyABSA 入门指南:基于深度学习的情感分析工具包
是纯一呀
DeepLearningAINLP深度学习人工智能NLP
在自然语言处理(NLP)领域,情感分析(SentimentAnalysis)一直是热门任务之一。而基于方面的情感分析(Aspect-BasedSentimentAnalysis,ABSA),则是更细粒度的分析方式——不仅判断正负情绪,还识别情绪对象(方面)和具体情感极性(如好/差)。什么是PyABSA?PyABSA(PythonAspect-BasedSentimentAnalysis)是一个专为
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 大语言模型应用指南:多模态大语言模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:多模态大语言模型作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大语言模型(MMLM),多媒体数据处理,自然语言理解,图像文本生成,应用场景探索1.背景介绍1.1问题的由来随着人工智能技术的迅速发展,特别是自然语言处理(NLP)领域的突破,大型语言模型(LargeLanguageModels,LLMs)成为研究热点。
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 【AI论文】MultiFinBen:一个用于金融大语言模型评估的多语言、多模态且具备难度感知能力的基准测试集
东临碣石82
人工智能金融语言模型
摘要:近期,大型语言模型(LLMs)的进展加速了金融自然语言处理(NLP)及其应用的发展,然而现有的基准测试仍局限于单语言和单模态场景,往往过度依赖简单任务,无法反映现实世界金融交流的复杂性。我们推出了MultiFinBen,这是首个针对全球金融领域定制的多语言、多模态基准测试集,用于在特定领域任务上跨模态(文本、视觉、音频)和语言环境(单语言、双语、多语言)对大型语言模型进行评估。我们引入了两个
- 小白的进阶之路系列之十七----人工智能从初步到精通pytorch综合运用的讲解第十部分
金沙阳
人工智能pytorchpython
NLP从零开始:使用字符级RNN生成姓名这是我们“NLP从零开始”系列三部分教程中的第二部分。在第一个教程中,我们使用了RNN将姓名分类到其语言来源。这次我们将反过来,从语言生成姓名。>pythonsample.pyRussianRUSRovakovUantovShavakov>pythonsample.pyGermanGERGerrenErengRosher>pythonsample.pySpa
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- 程序代码篇---ESP32-S3小智固件
Atticus-Orion
深度学习篇程序代码篇上位机知识篇AIEsp32-S3小智
Q1:ESP32-S3小智语音对话系统的整体架构是怎样的?A1:该系统采用“语音采集→唤醒词检测→ASR→NLP→TTS→语音播放”的流水线架构:硬件层:ESP32-S3芯片+麦克风阵列(如INMP441)+扬声器(如MAX98357A)。驱动层:ESP-IDF或Arduino框架提供的I2S、ADC、DAC驱动。算法层:唤醒词检测:基于MicroML(如TensorFlowLiteMicro)。
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$