- Vision Transformer(ViT):用 Transformer 颠覆图像识别
金外飞176
论文精读transformer深度学习人工智能
VisionTransformer(ViT):用Transformer颠覆图像识别在计算机视觉领域,卷积神经网络(CNN)长期以来一直是图像识别任务的主流架构。然而,近年来,自然语言处理(NLP)领域中大放异彩的Transformer架构也开始在图像识别中崭露头角。今天,我们将深入探讨一种创新的架构——VisionTransformer(ViT),它将Transformer的强大能力直接应用于图像
- 网络安全常识
网络安全Ash
web安全网络安全
一、网络安全常识什么是网络安全?网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭到破坏、更改、泄露,系统可以连续可靠正常地运行,网络服务不被中断。什么是计算机病毒?计算机病毒(ComputerVirus)是指编制者在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用并且能够自我复制的一组计算机指令或者程序代码。什么是木马?木马是一种带有恶意性质的远程
- CCNP350-401学习笔记(351-400题)
殊彦_sy
CCNP题库学习
351、WhichnewenhancementwasimplementedinWi-Fi6?A.4096QuadratureAmplitudeModulationModeB.ChannelbondingC.Wi-FiProtectedAccess3D.UplinkandDownlinkOrthogonalFrequencyDivisionMultipleAccess352、HowdoesIGMPf
- 机器学习(1)安装Pytorch
CoderIsArt
机器学习与深度学习机器学习pytorch人工智能
1.安装命令pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1182.安装过程Log:Lookinginindexes:https://download.pytorch.org/whl/cu118CollectingtorchDownloadinghttps://download.
- 十五、K8S-持久卷PV和PVC
繁华依在
k8skubernetesdocker容器
目录一、感念:1、PersistentVolume(PV)2、PersistentVolumeClaim(PVC)二、PV和PVC工作原理1、资源供应(Provisioning)2、资源绑定(Binding)3、资源使用(Using)4、资源回收(Reclaiming)1、保留数据:2、Deleted(删除数据):3、Recycled(回收策略):5、PVC资源扩容三、PV详解1、存储容量(Cap
- 模型保存、训练与验证
钰见梵星
小土堆PyTorch深度学习深度学习人工智能
模型保存、训练与验证网络模型的保存与读取在PyTorch中,模型的保存与加载有两种主要方式:保存&加载完整模型(包括网络结构和参数)只保存&加载模型参数(推荐方式)可以直接跳过看最后几行。PyTorch提供torch.save()方法来保存模型,可以选择保存整个模型结构或只保存参数。保存整个模型importtorchfromtorchvisionimportmodels#加载VGG16模型(未使用
- LabVIEW利用CANopen的Batch SDO写入
LabVIEW开发
CanOpenLabVIEW知识CANOPENlabview
本示例展示了如何通过CANopen协议向设备写入BatchSDO(批量服务数据对象)。BatchSDO允许用户在一次操作中配置多个参数,适用于设备的批量配置和参数设置。此方法能够简化多个参数的写入过程,提高设备管理效率。主要步骤:创建新的BatchSDO:在NICANopenforPXIPCI项目中,右键点击MyComputer或RTTarget,从快捷菜单中选择NewCANopenBatchSD
- Operating System Concepts 9th Chapter 1 - Introduction
YOUNGBC
操作系统
Introduction目录Introduction1.WhatOperatingSystemsDo2.Computer-SystemOrganization2.1StorageStructure2.2I/OStructure3.Computer-SystemArchitectur3.1Single-ProcessorSystems3.2MultiprocessorSystems3.3Cluste
- 《Operating System Concepts》阅读笔记:p2-p8
codists
读书笔记systempython
《OperatingSystemConcepts》学习第2天,p2-p8总结,总计7页。一、技术总结1.operatingsystemAnoperatingsystemissoftwarethatmanagesacomputer’shardware。2.systembusdatabus,addressbus,controlbus统称为systembus。二、英语总结(生词:5)1.myriad(1
- torch环境冲突:AttributeError: module ‘torch.library‘ has no attribute ‘register_fake‘
Ven%
深度学习速通系列深度学习基础动手Ubuntu深度学习机器学习pytorch
如果torch版本冲突问题复杂,可以尝试清理环境并重新安装所有依赖项:pipuninstalltorchtorchaudiotorchvisionpipinstalltorch==2.3.1torchaudio==2.3.1torchvision==0.18.1-fhttps://mirrors.tuna.tsinghua.edu.cn/pytorch-wheels/torch_stable.ht
- Pytorch实现论文:利用推土机距离与梯度惩罚在ACGAN中训练。
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能深度学习gan机器学习生成对抗网络
论文简介论文:ACWGAN-GPformillingtoolbreakagemonitoringwithimbalanceddata(ACWGAN-GP用于铣削工具断裂监视的数据不平衡数据)出处:RoboticsandComputer-IntegratedManufacturing论文摘要:铣削操作过程中的刀具破损监测(TBM)对于确保工件质量和最大限度减少经济损失至关重要。在训练数据充足、分布均
- python 山脊图_(数据科学学习手札98)纯Python绘制满满艺术感的山脊地图
weixin_39780255
python山脊图
1简介下面的这幅图可能很多读者朋友们都看到过,这是英国摇滚乐队JoyDivision在1979年发行的其第一张录音室专辑UnknownPleasures的封面,由艺术家PeterSaville基于射电脉冲星信号的数据图创作而成,成为了一种流行文化的符号标志。图1类似图1的风格,在地图制作中也存在着一种山脊地图,基于记录地表海拔信息的高程数据,我们可以利用水平方向上的基于实际位置海拔高度的曲线,来对
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- Hyperparameter Tuning 原理与代码实战案例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
HyperparameterTuning原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:超参数调优,模型选择,性能提升,代码实战1.背景介绍1.1问题的由来在机器学习中,模型的选择和调优是至关重要的。模型选择涉及选择合适的算法和架构,而调优则集中在优化模型参数以提升性能。然而,模型参数众多,且每个参数的取值范围可能很广,
- CVPR‘24 | 百度开源DETRs在实时目标检测中胜过YOLOs
3D视觉工坊
3D视觉从入门到精通百度目标检测人工智能计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:目标检测,拉你入群。文末附行业细分群论文题目:DETRsBeatYOLOsonReal-timeObjectDetection作者:WenyuLv,YianZhao等作者机构:BaiduInc.论文链接:https://arxiv.org/pdf/2304.08069.pdf代
- AIGC从入门到实战:揭秘 Midjourney 的提示词写作技巧
AI架构设计之禅
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:揭秘Midjourney的提示词写作技巧作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,人工智能生成内容(AIGC)逐渐成为可能。AIGC指的是利用人工智能技术自动生成文本、图像、音乐等内容。在AIGC领域,Midjourney是一个备受关注的技术,它能够根据用户输入的提示
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- Pytorch实现mnist手写数字识别
Zn要学习
python
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**我的环境:语言环境:Python3.8编译器:JupyterLab深度学习环境:torch==1.12.1+cu113torchvision==0.13.1+cu113一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimporttorchimporttorch.nnasnnimpo
- Modelling & Downstream Applications
后端
ComputerAidedEngineering(MEC524)Assignment:3DModelling&DownstreamApplicationsYouarerequiredtomodelanassemblyusingSolidEdgesoftware.Thesuitabilityoftheassemblyselectedmustberatifiedbythetutorbeforeyouc
- 计算机视觉如何快速入门?
Frunze软件开发
日常问题回答开发语言计算机视觉工业异常检测论文
目录1.明确研究方向2.学习基础知识3.掌握核心算法4.实践项目5.阅读文献6.复现经典论文7.改进与创新总结计算机视觉(ComputerVision)是一个复杂且广泛的领域,尤其是工业异常检测这种特定方向,需要结合理论知识和实践技能。以下是一些具体的、可操作的建议,也是个人实际路径的一个总结,希望可以帮助到你快速入门并完成一篇论文。1.明确研究方向-工业异常检测的核心是识别图像或视频中的异常区域
- Modelling & Downstream Applications
后端
ComputerAidedEngineering(MEC524)Assignment:3DModelling&DownstreamApplicationsYouarerequiredtomodelanassemblyusingSolidEdgesoftware.Thesuitabilityoftheassemblyselectedmustberatifiedbythetutorbeforeyouc
- 探索远程睡眠控制新境界:Sleep-On-LAN
史姿若Muriel
探索远程睡眠控制新境界:Sleep-On-LANsleep-on-lanMulti-platformprocessallowingtosleeponLANalinuxorwindowscomputer,throughwake-on-lan(reversed)magicpacketsorthroughHTTPRESTrequests.项目地址:https://gitcode.com/gh_mirro
- 3D机器视觉的类型、应用和未来趋势
视觉人机器视觉
机器视觉3D3d人工智能计算机视觉c#前端
3D机器视觉的类型、应用和未来趋势类型3D机器视觉技术主要分为以下几类:立体视觉(StereoVision)通过两个或多个摄像头从不同角度捕捉图像,利用视差计算深度信息,生成3D模型。结构光(StructuredLight)使用投影仪将特定光图案投射到物体表面,通过摄像头捕捉变形图案,计算物体形状和深度。飞行时间(TimeofFlight,ToF)通过测量光脉冲从发射到反射回传感器的时间,计算物体
- 全面采用亚马逊云科技:利用亚马逊云转变生产运营
AI航海家
AWS
全面采用亚马逊云科技:利用亚马逊云转变生产运营关键字:[AmazonWebServicesre:Invent2024,亚马逊云科技,生成式AI,Bedrock,CloudMigrationJourney,GenerativeAiSolutions,DataStrategyVision,SingleCloudSimplification,ProductionOperationsTransformat
- 【Stable Diffusion部署至Google Colab】
星星点点洲
stablediffusion
GoogleColab中快速搭建带GPU加速的StableDiffusionWebUIfromgoogle.colabimportdrivedrive.mount('/content/drive')!mkdir/content/drive/MyDrive/sd-webui-files!pipinstalltorch==1.13.1+cu116torchvision==0.14.1+cu116tor
- OpenCV及基本用法
m0_74823683
opencv人工智能计算机视觉
一.OpenCV介绍1.OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库。OpenCV是最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
- MD5加密
计蒙不吃鱼
Android开发相关MD5MD5加密
简介:MD5的全称是Message-DigestAlgorithm5(信息-摘要算法),它是一种单向加密算法,可以将输入的信息加密转换为128位固定长度的散列值,用于检验数据传输过程中的完整性。在90年代初由MITLaboratoryforComputerScience和RSADataSecurityInc的RonaldL.Rivest开发出来,经MD2、MD3和MD4发展而来。出现的两种观点:1
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 简单枚举 / 枚举排列
Zhouqi_Hua
Henry学C++Henry的ACM学习笔记蓝桥杯c++算法深度优先力扣
本文参考《算法竞赛入门经典》第七章《暴力枚举法》,提出的是暴力“列举”出所有可能性并一一试验的方法。目录1简单枚举2枚举排列2.1生成1~n的排列2.2生成可重集的排列2.3解答树2.4下一个排列一、简单枚举简单枚举就是枚举一些例如整数、子串的简单类型。但是如果拿到题目直接上手枚举,可能会导致枚举次数过多(甚至引起TLE)。因此在枚举前先要进行分析。比如例题除法(Division,Uva725):
- 集成学习算法简述
終不似少年遊*
人工智能学习进阶集成学习算法机器学习人工智能提高效率
目录1.必要的导入2.Bagging集成3.基于matplotlib写一个函数对决策边界做可视化4.总结图中结论5.扩展说明1.必要的导入#Tosupportbothpython2andpython3from__future__importdivision,print_function,unicode_literals#Commonimportsimportnumpyasnpimportos#to
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不